Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60716 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4604 1.6711 0.8739 [X:[], M:[0.9913], q:[0.5719, 0.5199], qb:[0.4541, 0.4367], phi:[0.3362]] [X:[], M:[[9]], q:[[-17], [37]], qb:[[-10], [8]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 0 t^2.02 + t^2.87 + t^2.92 + t^2.97 + t^3.03 + t^3.08 + t^3.88 + t^3.93 + 2*t^4.03 + t^4.09 + 2*t^4.89 + 2*t^4.94 + 2*t^4.99 + 3*t^5.04 + 2*t^5.1 + t^5.74 + t^5.79 + 2*t^5.84 + 3*t^5.9 + 3*t^5.95 + 4*t^6.05 + 2*t^6.1 + t^6.75 + 2*t^6.8 + 2*t^6.85 + 5*t^6.9 + 5*t^6.96 + 4*t^7.01 + 5*t^7.06 + 4*t^7.11 + t^7.71 + 3*t^7.76 + 4*t^7.81 + 5*t^7.86 + 6*t^7.91 + 6*t^7.97 + 3*t^8.02 + 6*t^8.07 + 4*t^8.12 + t^8.17 + t^8.61 + t^8.66 + 2*t^8.71 + 4*t^8.77 + 6*t^8.82 + 4*t^8.87 + 7*t^8.92 + 6*t^8.97 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.88/y - t^6.93/y - t^6.98/y - (2*t^7.03)/y - t^7.09/y + t^7.99/y - t^8.04/y + t^8.79/y + t^8.84/y + t^8.9/y + t^8.95/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.88*y - t^6.93*y - t^6.98*y - 2*t^7.03*y - t^7.09*y + t^7.99*y - t^8.04*y + t^8.79*y + t^8.84*y + t^8.9*y + t^8.95*y t^2.02/g1^6 + g1^45*t^2.87 + g1^27*t^2.92 + g1^9*t^2.97 + t^3.03/g1^9 + t^3.08/g1^27 + g1^42*t^3.88 + g1^24*t^3.93 + (2*t^4.03)/g1^12 + t^4.09/g1^30 + 2*g1^39*t^4.89 + 2*g1^21*t^4.94 + 2*g1^3*t^4.99 + (3*t^5.04)/g1^15 + (2*t^5.1)/g1^33 + g1^90*t^5.74 + g1^72*t^5.79 + 2*g1^54*t^5.84 + 3*g1^36*t^5.9 + 3*g1^18*t^5.95 + (4*t^6.05)/g1^18 + (2*t^6.1)/g1^36 + g1^87*t^6.75 + 2*g1^69*t^6.8 + 2*g1^51*t^6.85 + 5*g1^33*t^6.9 + 5*g1^15*t^6.96 + (4*t^7.01)/g1^3 + (5*t^7.06)/g1^21 + (4*t^7.11)/g1^39 + g1^102*t^7.71 + 3*g1^84*t^7.76 + 4*g1^66*t^7.81 + 5*g1^48*t^7.86 + 6*g1^30*t^7.91 + 6*g1^12*t^7.97 + (3*t^8.02)/g1^6 + (6*t^8.07)/g1^24 + (4*t^8.12)/g1^42 + t^8.17/g1^60 + g1^135*t^8.61 + g1^117*t^8.66 + 2*g1^99*t^8.71 + 4*g1^81*t^8.77 + 6*g1^63*t^8.82 + 4*g1^45*t^8.87 + 7*g1^27*t^8.92 + 6*g1^9*t^8.97 - t^4.01/(g1^3*y) - t^5.02/(g1^6*y) - t^6.03/(g1^9*y) - (g1^42*t^6.88)/y - (g1^24*t^6.93)/y - (g1^6*t^6.98)/y - (2*t^7.03)/(g1^12*y) - t^7.09/(g1^30*y) + (g1^3*t^7.99)/y - t^8.04/(g1^15*y) + (g1^72*t^8.79)/y + (g1^54*t^8.84)/y + (g1^36*t^8.9)/y + (g1^18*t^8.95)/y - (t^4.01*y)/g1^3 - (t^5.02*y)/g1^6 - (t^6.03*y)/g1^9 - g1^42*t^6.88*y - g1^24*t^6.93*y - g1^6*t^6.98*y - (2*t^7.03*y)/g1^12 - (t^7.09*y)/g1^30 + g1^3*t^7.99*y - (t^8.04*y)/g1^15 + g1^72*t^8.79*y + g1^54*t^8.84*y + g1^36*t^8.9*y + g1^18*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57487 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4741 1.6832 0.8758 [X:[], M:[0.9974], q:[0.5065, 0.491], qb:[0.5013, 0.4961], phi:[0.3342]] t^2.01 + t^2.96 + t^2.98 + t^2.99 + t^3.01 + t^3.02 + t^3.96 + t^3.98 + 2*t^4.01 + t^4.03 + 2*t^4.97 + 2*t^4.98 + t^5. + 2*t^5.01 + 2*t^5.03 + t^5.47 + t^5.48 + t^5.5 + t^5.51 + t^5.92 + t^5.94 + t^5.95 + 3*t^5.97 + 3*t^5.98 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail