Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60693 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4588 1.6693 0.8739 [X:[1.3267], M:[0.99, 0.6819], q:[0.4374, 0.4404], qb:[0.5611, 0.5411], phi:[0.3367]] [X:[[0, 6]], M:[[0, 9], [-1, -10]], q:[[-1, 10], [1, 0]], qb:[[0, -5], [0, 13]], phi:[[0, -3]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ ${}$ -2 t^2.05 + 2*t^2.94 + t^2.97 + 2*t^3. + t^3.95 + t^3.98 + 2*t^4.01 + t^4.09 + 4*t^4.96 + t^4.98 + t^4.99 + 3*t^5.02 + t^5.04 + t^5.05 + t^5.87 + t^5.88 + t^5.89 + 2*t^5.91 + t^5.93 + 3*t^5.94 + t^5.95 + 4*t^5.97 + t^5.99 - 2*t^6. + t^6.03 + t^6.05 + t^6.14 + t^6.88 + t^6.89 + 3*t^6.92 + 2*t^6.94 + 3*t^6.95 + t^6.96 + t^6.97 + 6*t^6.98 + t^6.99 + 2*t^7. + t^7.01 + t^7.03 + t^7.04 + 2*t^7.06 + t^7.09 + t^7.1 + 3*t^7.89 + 5*t^7.9 + 2*t^7.91 + t^7.92 + 5*t^7.93 + 4*t^7.95 + 6*t^7.96 + 2*t^7.97 + t^7.98 + 4*t^7.99 + 2*t^8.01 + 2*t^8.02 + t^8.04 - 2*t^8.05 + t^8.07 + t^8.1 + t^8.18 + t^8.81 + 2*t^8.82 + t^8.83 + t^8.84 + t^8.85 + t^8.86 + t^8.87 + 6*t^8.88 + t^8.89 + 4*t^8.9 + 6*t^8.91 + 2*t^8.92 + t^8.93 - t^8.94 + 5*t^8.96 + 2*t^8.97 + 2*t^8.98 + 2*t^8.99 - t^4.01/y - t^5.02/y - t^6.06/y - (2*t^6.95)/y - t^6.98/y - (2*t^7.01)/y - t^7.07/y - t^7.96/y + t^7.98/y - t^8.02/y + t^8.04/y + t^8.05/y - t^8.1/y + t^8.88/y + (2*t^8.91)/y + t^8.93/y + (2*t^8.94)/y + t^8.95/y + t^8.97/y - t^4.01*y - t^5.02*y - t^6.06*y - 2*t^6.95*y - t^6.98*y - 2*t^7.01*y - t^7.07*y - t^7.96*y + t^7.98*y - t^8.02*y + t^8.04*y + t^8.05*y - t^8.1*y + t^8.88*y + 2*t^8.91*y + t^8.93*y + 2*t^8.94*y + t^8.95*y + t^8.97*y t^2.05/(g1*g2^10) + g1*g2^13*t^2.94 + (g2^23*t^2.94)/g1 + g2^9*t^2.97 + (g1*t^3.)/g2^5 + (g2^5*t^3.)/g1 + (g2^20*t^3.95)/g1 + g2^6*t^3.98 + (g1*t^4.01)/g2^8 + (g2^2*t^4.01)/g1 + t^4.09/(g1^2*g2^20) + 2*g1*g2^7*t^4.96 + (2*g2^17*t^4.96)/g1 + (g2^13*t^4.98)/g1^2 + g2^3*t^4.99 + (g1*t^5.02)/g2^11 + (2*t^5.02)/(g1*g2) + t^5.04/(g1^2*g2^5) + t^5.05/g2^15 + (g2^46*t^5.87)/g1^2 + g2^36*t^5.88 + g1^2*g2^26*t^5.89 + g1*g2^22*t^5.91 + (g2^32*t^5.91)/g1 + (g2^28*t^5.93)/g1^2 + 3*g2^18*t^5.94 + g1^2*g2^8*t^5.95 + 2*g1*g2^4*t^5.97 + (2*g2^14*t^5.97)/g1 + (g2^10*t^5.99)/g1^2 - 2*t^6. + t^6.03/(g1*g2^4) + t^6.05/(g1^2*g2^8) + t^6.14/(g1^3*g2^30) + (g2^43*t^6.88)/g1^2 + g2^33*t^6.89 + g1*g2^19*t^6.92 + (2*g2^29*t^6.92)/g1 + (2*g2^25*t^6.94)/g1^2 + 3*g2^15*t^6.95 + g1^2*g2^5*t^6.96 + (g2^21*t^6.97)/g1^3 + 3*g1*g2*t^6.98 + (3*g2^11*t^6.98)/g1 + (g1^3*t^6.99)/g2^9 + (2*g2^7*t^7.)/g1^2 + t^7.01/g2^3 + (g2^3*t^7.03)/g1^3 + t^7.04/(g1*g2^7) + (2*t^7.06)/(g1^2*g2^11) + t^7.09/(g1^3*g2^15) + t^7.1/(g1*g2^25) + (3*g2^40*t^7.89)/g1^2 + 5*g2^30*t^7.9 + 2*g1^2*g2^20*t^7.91 + (g2^36*t^7.92)/g1^3 + 2*g1*g2^16*t^7.93 + (3*g2^26*t^7.93)/g1 + (4*g2^22*t^7.95)/g1^2 + 6*g2^12*t^7.96 + 2*g1^2*g2^2*t^7.97 + (g2^18*t^7.98)/g1^3 + (g1*t^7.99)/g2^2 + (3*g2^8*t^7.99)/g1 + (2*g2^4*t^8.01)/g1^2 + (2*t^8.02)/g2^6 + t^8.04/g1^3 - (2*t^8.05)/(g1*g2^10) + t^8.07/(g1^2*g2^14) + t^8.1/(g1^3*g2^18) + t^8.18/(g1^4*g2^40) + (g2^69*t^8.81)/g1^3 + g1*g2^49*t^8.82 + (g2^59*t^8.82)/g1 + g1^3*g2^39*t^8.83 + (g2^55*t^8.84)/g1^2 + g2^45*t^8.85 + g1^2*g2^35*t^8.86 + (g2^51*t^8.87)/g1^3 + 3*g1*g2^31*t^8.88 + (3*g2^41*t^8.88)/g1 + g1^3*g2^21*t^8.89 + (4*g2^37*t^8.9)/g1^2 + 6*g2^27*t^8.91 + 2*g1^2*g2^17*t^8.92 + (g2^33*t^8.93)/g1^3 - g1*g2^13*t^8.94 + (5*g2^19*t^8.96)/g1^2 + 2*g2^9*t^8.97 + (2*g1^2*t^8.98)/g2 + (2*g2^15*t^8.99)/g1^3 - t^4.01/(g2^3*y) - t^5.02/(g2^6*y) - t^6.06/(g1*g2^13*y) - (g1*g2^10*t^6.95)/y - (g2^20*t^6.95)/(g1*y) - (g2^6*t^6.98)/y - (g1*t^7.01)/(g2^8*y) - (g2^2*t^7.01)/(g1*y) - t^7.07/(g1*g2^16*y) - (g2^17*t^7.96)/(g1*y) + (g2^13*t^7.98)/(g1^2*y) - (g1*t^8.02)/(g2^11*y) + t^8.04/(g1^2*g2^5*y) + t^8.05/(g2^15*y) - t^8.1/(g1^2*g2^23*y) + (g2^36*t^8.88)/y + (g1*g2^22*t^8.91)/y + (g2^32*t^8.91)/(g1*y) + (g2^28*t^8.93)/(g1^2*y) + (2*g2^18*t^8.94)/y + (g1^2*g2^8*t^8.95)/y + (g1*g2^4*t^8.97)/y - (t^4.01*y)/g2^3 - (t^5.02*y)/g2^6 - (t^6.06*y)/(g1*g2^13) - g1*g2^10*t^6.95*y - (g2^20*t^6.95*y)/g1 - g2^6*t^6.98*y - (g1*t^7.01*y)/g2^8 - (g2^2*t^7.01*y)/g1 - (t^7.07*y)/(g1*g2^16) - (g2^17*t^7.96*y)/g1 + (g2^13*t^7.98*y)/g1^2 - (g1*t^8.02*y)/g2^11 + (t^8.04*y)/(g1^2*g2^5) + (t^8.05*y)/g2^15 - (t^8.1*y)/(g1^2*g2^23) + g2^36*t^8.88*y + g1*g2^22*t^8.91*y + (g2^32*t^8.91*y)/g1 + (g2^28*t^8.93*y)/g1^2 + 2*g2^18*t^8.94*y + g1^2*g2^8*t^8.95*y + g1*g2^4*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57573 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4381 1.6292 0.8827 [X:[1.3255], M:[0.9883], q:[0.4379, 0.4379], qb:[0.5621, 0.5386], phi:[0.3372]] 2*t^2.93 + t^2.96 + 2*t^3. + 2*t^3.94 + t^3.98 + 2*t^4.01 + 4*t^4.95 + 2*t^5.02 + 3*t^5.86 + 2*t^5.89 + 5*t^5.93 + 4*t^5.96 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail