Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60686 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.341 1.552 0.864 [X:[1.3442], M:[0.7209], q:[0.3659, 0.645], qb:[0.6341, 0.2899], phi:[0.3442]] [X:[[1]], M:[[5]], q:[[3], [-2]], qb:[[-3], [-4]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$ 0 t^2.07 + t^2.16 + t^2.8 + 2*t^3. + t^3.1 + t^3.84 + 3*t^4.03 + t^4.13 + t^4.23 + t^4.33 + t^4.67 + 3*t^4.87 + 3*t^5.07 + 3*t^5.16 + t^5.26 + t^5.61 + 3*t^5.71 + 2*t^5.8 + 3*t^5.9 + 5*t^6.1 + 5*t^6.2 + t^6.29 + 2*t^6.39 + t^6.49 + t^6.64 + 3*t^6.74 + 3*t^6.84 + 3*t^6.93 + 4*t^7.03 + 5*t^7.13 + 4*t^7.23 + 2*t^7.33 + t^7.42 + t^7.48 + 4*t^7.67 + 4*t^7.77 + 8*t^7.87 + 3*t^7.97 + 7*t^8.07 + 4*t^8.16 + 7*t^8.26 + 3*t^8.36 + t^8.41 + 2*t^8.46 + 4*t^8.51 + 2*t^8.55 + t^8.65 + 9*t^8.71 + 4*t^8.8 + 11*t^8.9 - t^4.03/y - t^5.07/y - t^6.1/y - t^6.2/y - t^6.84/y - t^7.03/y - (2*t^7.13)/y + (2*t^7.97)/y - t^8.07/y + t^8.16/y - t^8.36/y + (2*t^8.8)/y - t^4.03*y - t^5.07*y - t^6.1*y - t^6.2*y - t^6.84*y - t^7.03*y - 2*t^7.13*y + 2*t^7.97*y - t^8.07*y + t^8.16*y - t^8.36*y + 2*t^8.8*y g1^2*t^2.07 + g1^5*t^2.16 + t^2.8/g1^6 + 2*t^3. + g1^3*t^3.1 + t^3.84/g1^5 + 3*g1*t^4.03 + g1^4*t^4.13 + g1^7*t^4.23 + g1^10*t^4.33 + t^4.67/g1^10 + (3*t^4.87)/g1^4 + 3*g1^2*t^5.07 + 3*g1^5*t^5.16 + g1^8*t^5.26 + t^5.61/g1^12 + (3*t^5.71)/g1^9 + (2*t^5.8)/g1^6 + (3*t^5.9)/g1^3 + 5*g1^3*t^6.1 + 5*g1^6*t^6.2 + g1^9*t^6.29 + 2*g1^12*t^6.39 + g1^15*t^6.49 + t^6.64/g1^11 + (3*t^6.74)/g1^8 + (3*t^6.84)/g1^5 + (3*t^6.93)/g1^2 + 4*g1*t^7.03 + 5*g1^4*t^7.13 + 4*g1^7*t^7.23 + 2*g1^10*t^7.33 + g1^13*t^7.42 + t^7.48/g1^16 + (4*t^7.67)/g1^10 + (4*t^7.77)/g1^7 + (8*t^7.87)/g1^4 + (3*t^7.97)/g1 + 7*g1^2*t^8.07 + 4*g1^5*t^8.16 + 7*g1^8*t^8.26 + 3*g1^11*t^8.36 + t^8.41/g1^18 + 2*g1^14*t^8.46 + (4*t^8.51)/g1^15 + 2*g1^17*t^8.55 + g1^20*t^8.65 + (9*t^8.71)/g1^9 + (4*t^8.8)/g1^6 + (11*t^8.9)/g1^3 - (g1*t^4.03)/y - (g1^2*t^5.07)/y - (g1^3*t^6.1)/y - (g1^6*t^6.2)/y - t^6.84/(g1^5*y) - (g1*t^7.03)/y - (2*g1^4*t^7.13)/y + (2*t^7.97)/(g1*y) - (g1^2*t^8.07)/y + (g1^5*t^8.16)/y - (g1^11*t^8.36)/y + (2*t^8.8)/(g1^6*y) - g1*t^4.03*y - g1^2*t^5.07*y - g1^3*t^6.1*y - g1^6*t^6.2*y - (t^6.84*y)/g1^5 - g1*t^7.03*y - 2*g1^4*t^7.13*y + (2*t^7.97*y)/g1 - g1^2*t^8.07*y + g1^5*t^8.16*y - g1^11*t^8.36*y + (2*t^8.8*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57470 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.348 1.5616 0.8633 [X:[1.354], M:[0.7701], q:[0.3455, 0.5754], qb:[0.6545, 0.3005], phi:[0.354]] t^2.12 + t^2.31 + t^2.63 + 2*t^3. + t^3.19 + t^3.69 + 3*t^4.06 + t^4.25 + t^4.43 + t^4.62 + 3*t^4.75 + t^4.83 + t^4.86 + 3*t^5.12 + t^5.26 + 2*t^5.31 + t^5.5 + t^5.55 + 2*t^5.63 + 3*t^5.81 + 3*t^5.89 + t^5.92 - t^6. - t^4.06/y - t^5.12/y - t^4.06*y - t^5.12*y detail