Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60619 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4951 1.725 0.8667 [X:[], M:[0.9954, 0.6743], q:[0.4885, 0.5069], qb:[0.5023, 0.4931], phi:[0.3349]] [X:[], M:[[-3, 3], [5, -5]], q:[[-12, 6], [0, -6]], qb:[[6, 0], [0, 6]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$ ${}$ -2 t^2.01 + t^2.02 + t^2.94 + t^2.97 + t^2.99 + t^3. + t^3.03 + t^3.95 + t^4. + t^4.02 + 2*t^4.03 + t^4.05 + 2*t^4.95 + t^4.97 + 2*t^4.98 + 2*t^5. + 3*t^5.01 + t^5.02 + 2*t^5.04 + t^5.05 + t^5.46 + t^5.47 + t^5.5 + t^5.51 + t^5.89 + t^5.92 + t^5.93 + t^5.94 + 2*t^5.96 + 3*t^5.97 + t^5.99 - 2*t^6. + 2*t^6.01 + 2*t^6.03 + 2*t^6.04 + 2*t^6.06 + t^6.07 + t^6.46 + t^6.47 + t^6.5 + t^6.52 + t^6.89 + t^6.92 + t^6.94 + t^6.95 + 2*t^6.96 + 4*t^6.98 + 4*t^6.99 + 2*t^7. + 5*t^7.02 + 4*t^7.03 + 3*t^7.05 + 2*t^7.06 + t^7.07 + t^7.41 + t^7.45 + t^7.47 + 2*t^7.48 + t^7.49 + t^7.51 + 2*t^7.52 + 2*t^7.53 + t^7.58 + 3*t^7.9 + t^7.91 + 3*t^7.93 + 2*t^7.94 + 5*t^7.95 + 3*t^7.97 + 7*t^7.98 + 4*t^8. + t^8.01 + 5*t^8.04 + 3*t^8.05 + 3*t^8.06 + 2*t^8.08 + t^8.09 + t^8.4 + t^8.41 + 2*t^8.44 + 2*t^8.46 + t^8.47 + 3*t^8.48 + 2*t^8.5 + t^8.53 + t^8.54 - t^8.55 - t^8.57 + t^8.83 + t^8.86 + t^8.88 + t^8.89 + 3*t^8.9 + 3*t^8.92 + 3*t^8.93 - t^8.94 + 6*t^8.96 + 4*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.03/y - t^6.95/y - t^6.98/y - t^6.99/y - t^7./y - t^7.02/y - t^7.03/y + t^7.97/y + t^7.98/y + (2*t^8.)/y + t^8.01/y - t^8.04/y + t^8.92/y + t^8.93/y + t^8.94/y + (2*t^8.97)/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.03*y - t^6.95*y - t^6.98*y - t^6.99*y - t^7.*y - t^7.02*y - t^7.03*y + t^7.97*y + t^7.98*y + 2*t^8.*y + t^8.01*y - t^8.04*y + t^8.92*y + t^8.93*y + t^8.94*y + 2*t^8.97*y (g1^2*t^2.01)/g2^2 + (g1^5*t^2.02)/g2^5 + (g2^12*t^2.94)/g1^12 + (g2^6*t^2.97)/g1^6 + (g2^3*t^2.99)/g1^3 + t^3. + (g1^6*t^3.03)/g2^6 + (g2^11*t^3.95)/g1^11 + (g1*t^4.)/g2 + (g1^4*t^4.02)/g2^4 + (2*g1^7*t^4.03)/g2^7 + (g1^10*t^4.05)/g2^10 + (2*g2^10*t^4.95)/g1^10 + (g2^7*t^4.97)/g1^7 + (2*g2^4*t^4.98)/g1^4 + (2*g2*t^5.)/g1 + (3*g1^2*t^5.01)/g2^2 + (g1^5*t^5.02)/g2^5 + (2*g1^8*t^5.04)/g2^8 + (g1^11*t^5.05)/g2^11 + (g2^5*t^5.46)/g1^23 + g1^7*g2^11*t^5.47 + g1^13*g2^5*t^5.5 + t^5.51/(g1^11*g2^7) + (g2^24*t^5.89)/g1^24 + (g2^18*t^5.92)/g1^18 + (g2^15*t^5.93)/g1^15 + (g2^12*t^5.94)/g1^12 + (2*g2^9*t^5.96)/g1^9 + (3*g2^6*t^5.97)/g1^6 + (g2^3*t^5.99)/g1^3 - 2*t^6. + (2*g1^3*t^6.01)/g2^3 + (2*g1^6*t^6.03)/g2^6 + (2*g1^9*t^6.04)/g2^9 + (2*g1^12*t^6.06)/g2^12 + (g1^15*t^6.07)/g2^15 + (g2^4*t^6.46)/g1^22 + g1^8*g2^10*t^6.47 + g1^14*g2^4*t^6.5 + t^6.52/(g1^10*g2^8) + (g2^23*t^6.89)/g1^23 + (g2^17*t^6.92)/g1^17 + (g2^14*t^6.94)/g1^14 + (g2^11*t^6.95)/g1^11 + (2*g2^8*t^6.96)/g1^8 + (4*g2^5*t^6.98)/g1^5 + (4*g2^2*t^6.99)/g1^2 + (2*g1*t^7.)/g2 + (5*g1^4*t^7.02)/g2^4 + (4*g1^7*t^7.03)/g2^7 + (3*g1^10*t^7.05)/g2^10 + (2*g1^13*t^7.06)/g2^13 + (g1^16*t^7.07)/g2^16 + (g2^15*t^7.41)/g1^33 + g1^3*g2^15*t^7.45 + (2*g2^3*t^7.47)/g1^21 - g1^6*g2^12*t^7.47 + 2*g1^9*g2^9*t^7.48 + g1^12*g2^6*t^7.49 - t^7.51/(g1^12*g2^6) + 2*g1^15*g2^3*t^7.51 + (2*t^7.52)/(g1^9*g2^9) + t^7.53/(g1^6*g2^12) + (g1^21*t^7.53)/g2^3 + (g1^3*t^7.58)/g2^21 + (3*g2^22*t^7.9)/g1^22 + (g2^19*t^7.91)/g1^19 + (3*g2^16*t^7.93)/g1^16 + (2*g2^13*t^7.94)/g1^13 + (5*g2^10*t^7.95)/g1^10 + (3*g2^7*t^7.97)/g1^7 + (7*g2^4*t^7.98)/g1^4 + (4*g2*t^8.)/g1 + (g1^2*t^8.01)/g2^2 + (5*g1^8*t^8.04)/g2^8 + (3*g1^11*t^8.05)/g2^11 + (3*g1^14*t^8.06)/g2^14 + (2*g1^17*t^8.08)/g2^17 + (g1^20*t^8.09)/g2^20 + (g2^17*t^8.4)/g1^35 + (g2^23*t^8.41)/g1^5 + (g2^8*t^8.44)/g1^26 + g1*g2^17*t^8.44 + (g2^5*t^8.46)/g1^23 + g1^4*g2^14*t^8.46 + (g2^2*t^8.47)/g1^20 + t^8.48/(g1^17*g2) + 2*g1^10*g2^8*t^8.48 + t^8.5/(g1^14*g2^4) + g1^13*g2^5*t^8.5 - t^8.51/(g1^11*g2^7) + g1^16*g2^2*t^8.51 + t^8.53/(g1^8*g2^10) + t^8.54/(g1^5*g2^13) - (g1^25*t^8.55)/g2^7 - (g1*t^8.57)/g2^19 + (g2^36*t^8.83)/g1^36 + (g2^30*t^8.86)/g1^30 + (g2^27*t^8.88)/g1^27 + (g2^24*t^8.89)/g1^24 + (3*g2^21*t^8.9)/g1^21 + (3*g2^18*t^8.92)/g1^18 + (3*g2^15*t^8.93)/g1^15 - (g2^12*t^8.94)/g1^12 + (6*g2^9*t^8.96)/g1^9 + (4*g2^3*t^8.99)/g1^3 - (g1*t^4.)/(g2*y) - (g1^2*t^5.01)/(g2^2*y) - (g1^3*t^6.01)/(g2^3*y) - (g1^6*t^6.03)/(g2^6*y) - (g2^11*t^6.95)/(g1^11*y) - (g2^5*t^6.98)/(g1^5*y) - (g2^2*t^6.99)/(g1^2*y) - (g1*t^7.)/(g2*y) - (g1^4*t^7.02)/(g2^4*y) - (g1^7*t^7.03)/(g2^7*y) + (g2^7*t^7.97)/(g1^7*y) + (g2^4*t^7.98)/(g1^4*y) + (2*g2*t^8.)/(g1*y) + (g1^2*t^8.01)/(g2^2*y) - (g1^8*t^8.04)/(g2^8*y) + (g2^18*t^8.92)/(g1^18*y) + (g2^15*t^8.93)/(g1^15*y) + (g2^12*t^8.94)/(g1^12*y) + (2*g2^6*t^8.97)/(g1^6*y) - (g1*t^4.*y)/g2 - (g1^2*t^5.01*y)/g2^2 - (g1^3*t^6.01*y)/g2^3 - (g1^6*t^6.03*y)/g2^6 - (g2^11*t^6.95*y)/g1^11 - (g2^5*t^6.98*y)/g1^5 - (g2^2*t^6.99*y)/g1^2 - (g1*t^7.*y)/g2 - (g1^4*t^7.02*y)/g2^4 - (g1^7*t^7.03*y)/g2^7 + (g2^7*t^7.97*y)/g1^7 + (g2^4*t^7.98*y)/g1^4 + (2*g2*t^8.*y)/g1 + (g1^2*t^8.01*y)/g2^2 - (g1^8*t^8.04*y)/g2^8 + (g2^18*t^8.92*y)/g1^18 + (g2^15*t^8.93*y)/g1^15 + (g2^12*t^8.94*y)/g1^12 + (2*g2^6*t^8.97*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57486 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4743 1.6839 0.8755 [X:[], M:[0.9952], q:[0.4879, 0.5073], qb:[0.5024, 0.4927], phi:[0.3349]] t^2.01 + t^2.94 + t^2.97 + t^2.99 + t^3. + t^3.03 + t^3.95 + t^3.98 + t^4. + t^4.02 + t^4.03 + 2*t^4.95 + 2*t^4.98 + t^5. + 2*t^5.01 + 2*t^5.04 + t^5.45 + t^5.47 + t^5.5 + t^5.51 + t^5.88 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + 2*t^5.97 + 2*t^5.99 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail