Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60608 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4751 1.6867 0.8746 [X:[], M:[0.9903, 0.9903], q:[0.4949, 0.4949], qb:[0.5148, 0.4759], phi:[0.3366]] [X:[], M:[[-3, 3], [-3, 3]], q:[[-9, -3], [-9, -3]], qb:[[12, 0], [0, 12]], phi:[[1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -4 t^2.02 + 2*t^2.91 + 2*t^2.97 + t^3.03 + 2*t^3.92 + 3*t^4.04 + 4*t^4.93 + 2*t^4.99 + 3*t^5.05 + t^5.41 + 2*t^5.46 + t^5.53 + 3*t^5.82 + 3*t^5.88 + 7*t^5.94 - 4*t^6. + 4*t^6.06 - t^6.12 + t^6.42 + 2*t^6.47 + t^6.54 + 4*t^6.83 + 3*t^6.89 + 10*t^6.95 + t^7.01 + 5*t^7.07 - t^7.13 + t^7.31 + t^7.43 + 6*t^7.48 - 2*t^7.49 - t^7.54 + 2*t^7.55 + t^7.66 + 10*t^7.84 + 4*t^7.9 + 16*t^7.96 - 6*t^8.02 + 9*t^8.08 - 2*t^8.14 + 2*t^8.32 + 4*t^8.38 + 4*t^8.44 + 4*t^8.49 - 2*t^8.5 - 4*t^8.55 + 2*t^8.56 - 2*t^8.61 + 4*t^8.74 + 4*t^8.8 + 15*t^8.85 - 4*t^8.91 + 12*t^8.97 - t^4.01/y - t^5.02/y - t^6.03/y - (2*t^6.92)/y - (2*t^6.98)/y - (2*t^7.04)/y + t^7.99/y - t^8.05/y + t^8.82/y + (4*t^8.88)/y + t^8.94/y - t^4.01*y - t^5.02*y - t^6.03*y - 2*t^6.92*y - 2*t^6.98*y - 2*t^7.04*y + t^7.99*y - t^8.05*y + t^8.82*y + 4*t^8.88*y + t^8.94*y (g1^2*t^2.02)/g2^2 + (2*g2^9*t^2.91)/g1^9 + (2*g2^3*t^2.97)/g1^3 + (g1^3*t^3.03)/g2^3 + (2*g2^8*t^3.92)/g1^8 + (3*g1^4*t^4.04)/g2^4 + (4*g2^7*t^4.93)/g1^7 + (2*g2*t^4.99)/g1 + (3*g1^5*t^5.05)/g2^5 + g1^13*g2^23*t^5.41 + (2*t^5.46)/(g1^26*g2^10) + g1^25*g2^11*t^5.53 + (3*g2^18*t^5.82)/g1^18 + (3*g2^12*t^5.88)/g1^12 + (7*g2^6*t^5.94)/g1^6 - 4*t^6. + (4*g1^6*t^6.06)/g2^6 - (g1^12*t^6.12)/g2^12 + g1^14*g2^22*t^6.42 + (2*t^6.47)/(g1^25*g2^11) + g1^26*g2^10*t^6.54 + (4*g2^17*t^6.83)/g1^17 + (3*g2^11*t^6.89)/g1^11 + (10*g2^5*t^6.95)/g1^5 + (g1*t^7.01)/g2 + (5*g1^7*t^7.07)/g2^7 - (g1^13*t^7.13)/g2^13 + g1^3*g2^33*t^7.31 - t^7.43/(g1^30*g2^6) + 2*g1^15*g2^21*t^7.43 + (6*t^7.48)/(g1^24*g2^12) - 2*g1^21*g2^15*t^7.49 - t^7.54/(g1^18*g2^18) + 2*g1^27*g2^9*t^7.55 + (g1^39*t^7.66)/g2^3 + (10*g2^16*t^7.84)/g1^16 + (4*g2^10*t^7.9)/g1^10 + (16*g2^4*t^7.96)/g1^4 - (6*g1^2*t^8.02)/g2^2 + (9*g1^8*t^8.08)/g2^8 - (2*g1^14*t^8.14)/g2^14 + 2*g1^4*g2^32*t^8.32 + (4*t^8.38)/(g1^35*g2) + 4*g1^16*g2^20*t^8.44 + (4*t^8.49)/(g1^23*g2^13) - 2*g1^22*g2^14*t^8.5 - (4*t^8.55)/(g1^17*g2^19) + 2*g1^28*g2^8*t^8.56 - 2*g1^34*g2^2*t^8.61 + (4*g2^27*t^8.74)/g1^27 + (4*g2^21*t^8.8)/g1^21 + (15*g2^15*t^8.85)/g1^15 - (4*g2^9*t^8.91)/g1^9 + (12*g2^3*t^8.97)/g1^3 - (g1*t^4.01)/(g2*y) - (g1^2*t^5.02)/(g2^2*y) - (g1^3*t^6.03)/(g2^3*y) - (2*g2^8*t^6.92)/(g1^8*y) - (2*g2^2*t^6.98)/(g1^2*y) - (2*g1^4*t^7.04)/(g2^4*y) + (g2*t^7.99)/(g1*y) - (g1^5*t^8.05)/(g2^5*y) + (g2^18*t^8.82)/(g1^18*y) + (4*g2^12*t^8.88)/(g1^12*y) + (g2^6*t^8.94)/(g1^6*y) - (g1*t^4.01*y)/g2 - (g1^2*t^5.02*y)/g2^2 - (g1^3*t^6.03*y)/g2^3 - (2*g2^8*t^6.92*y)/g1^8 - (2*g2^2*t^6.98*y)/g1^2 - (2*g1^4*t^7.04*y)/g2^4 + (g2*t^7.99*y)/g1 - (g1^5*t^8.05*y)/g2^5 + (g2^18*t^8.82*y)/g1^18 + (4*g2^12*t^8.88*y)/g1^12 + (g2^6*t^8.94*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57648 SU3adj1nf2 ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.4759 1.6899 0.8734 [X:[], M:[0.9832, 0.9832], q:[0.5084, 0.4748], qb:[0.5084, 0.4748], phi:[0.3389]] t^2.03 + t^2.85 + 4*t^2.95 + t^3.87 + 2*t^3.97 + 2*t^4.07 + 2*t^4.88 + 6*t^4.98 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + 4*t^5.8 + 9*t^5.9 - 2*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail