Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60603 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}^{2}q_{2}$ 0.9889 1.1959 0.8269 [X:[1.5343, 1.4657, 1.5343, 1.4657], M:[0.9657, 0.9657, 0.7571], q:[0.2248, 0.2934], qb:[0.2409, 0.2409], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [0, -1, 0], [3, 2, 1]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}M_{3}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ ${}$ -6 t^2.27 + 4*t^2.9 + t^3. + 2*t^3.67 + t^3.93 + 4*t^4.4 + t^4.5 + t^4.54 + 4*t^4.6 + 6*t^5.17 + t^5.23 + t^5.27 + t^5.43 + 9*t^5.79 + 2*t^5.9 + 2*t^5.94 - 6*t^6. - 2*t^6.1 + t^6.52 + 6*t^6.57 + 8*t^6.67 - t^6.77 + t^6.81 + 4*t^6.87 + t^6.93 + t^7.14 + 15*t^7.29 + 3*t^7.34 + 4*t^7.4 + 6*t^7.44 + 12*t^7.5 + t^7.54 + 2*t^7.6 + t^7.87 - t^8.02 + 17*t^8.07 + 2*t^8.21 - t^8.23 - 6*t^8.27 - 2*t^8.37 - t^8.64 + 16*t^8.69 + 11*t^8.79 + 10*t^8.84 - 26*t^8.9 + 8*t^8.94 - t^4.5/y - t^6./y - t^6.77/y - (2*t^7.4)/y + t^7.5/y + (2*t^7.6)/y + (4*t^8.17)/y + t^8.23/y + (6*t^8.79)/y - (2*t^8.9)/y + (2*t^8.94)/y - t^4.5*y - t^6.*y - t^6.77*y - 2*t^7.4*y + t^7.5*y + 2*t^7.6*y + 4*t^8.17*y + t^8.23*y + 6*t^8.79*y - 2*t^8.9*y + 2*t^8.94*y g1^3*g2^2*g3*t^2.27 + (2*t^2.9)/g2 + 2*g3*t^2.9 + t^3. + g1^3*g2*g3*t^3.67 + g1^3*g2^2*g3^2*t^3.67 + t^3.93/(g1^3*g2*g3^2) + (2*t^4.4)/g2 + 2*g3*t^4.4 + t^4.5 + g1^6*g2^4*g3^2*t^4.54 + 2*g2*t^4.6 + (2*t^4.6)/g3 + 3*g1^3*g2*g3*t^5.17 + 3*g1^3*g2^2*g3^2*t^5.17 + t^5.23/(g1^3*g2^2*g3) + g1^3*g2^2*g3*t^5.27 + t^5.43/(g1^3*g2*g3^2) + (3*t^5.79)/g2^2 + (3*g3*t^5.79)/g2 + 3*g3^2*t^5.79 + t^5.9/g2 + g3*t^5.9 + g1^6*g2^3*g3^2*t^5.94 + g1^6*g2^4*g3^3*t^5.94 - 4*t^6. - t^6./(g2*g3) - g2*g3*t^6. - g2*t^6.1 - t^6.1/g3 + t^6.52/(g1^3*g2^3) + 2*g1^3*g3*t^6.57 + 2*g1^3*g2*g3^2*t^6.57 + 2*g1^3*g2^2*g3^3*t^6.57 + g1^3*t^6.67 + 3*g1^3*g2*g3*t^6.67 + 3*g1^3*g2^2*g3^2*t^6.67 + g1^3*g2^3*g3^3*t^6.67 - g1^3*g2^2*g3*t^6.77 + g1^9*g2^6*g3^3*t^6.81 + 2*g1^3*g2^2*t^6.87 + 2*g1^3*g2^3*g3*t^6.87 + t^6.93/(g1^3*g2*g3^2) + t^7.14/(g1^3*g3^3) + (4*t^7.29)/g2^2 + (7*g3*t^7.29)/g2 + 4*g3^2*t^7.29 + g1^6*g2^2*g3^2*t^7.34 + g1^6*g2^3*g3^3*t^7.34 + g1^6*g2^4*g3^4*t^7.34 + (2*t^7.4)/g2 + 2*g3*t^7.4 + 3*g1^6*g2^3*g3^2*t^7.44 + 3*g1^6*g2^4*g3^3*t^7.44 + 6*t^7.5 + (3*t^7.5)/(g2*g3) + 3*g2*g3*t^7.5 + g1^6*g2^4*g3^2*t^7.54 + g2*t^7.6 + t^7.6/g3 + t^7.87/(g1^6*g2^2*g3^4) - t^8.02/(g1^3*g2^3) + 5*g1^3*g3*t^8.07 + 7*g1^3*g2*g3^2*t^8.07 + 5*g1^3*g2^2*g3^3*t^8.07 - g1^3*t^8.17 + g1^3*g2*g3*t^8.17 + g1^3*g2^2*g3^2*t^8.17 - g1^3*g2^3*g3^3*t^8.17 + g1^9*g2^5*g3^3*t^8.21 + g1^9*g2^6*g3^4*t^8.21 - t^8.23/(g1^3*g2^2*g3) - g1^3*g2*t^8.27 - 4*g1^3*g2^2*g3*t^8.27 - g1^3*g2^3*g3^2*t^8.27 - g1^3*g2^2*t^8.37 - g1^3*g2^3*g3*t^8.37 - t^8.64/(g1^3*g3^3) + (4*t^8.69)/g2^3 + (4*g3*t^8.69)/g2^2 + (4*g3^2*t^8.69)/g2 + 4*g3^3*t^8.69 + (4*t^8.79)/g2^2 + (3*g3*t^8.79)/g2 + 4*g3^2*t^8.79 + 3*g1^6*g2^2*g3^2*t^8.84 + 4*g1^6*g2^3*g3^3*t^8.84 + 3*g1^6*g2^4*g3^4*t^8.84 - (11*t^8.9)/g2 - (2*t^8.9)/(g2^2*g3) - 11*g3*t^8.9 - 2*g2*g3^2*t^8.9 + g1^6*g2^2*g3*t^8.94 + 3*g1^6*g2^3*g3^2*t^8.94 + 3*g1^6*g2^4*g3^3*t^8.94 + g1^6*g2^5*g3^4*t^8.94 - t^4.5/y - t^6./y - (g1^3*g2^2*g3*t^6.77)/y - t^7.4/(g2*y) - (g3*t^7.4)/y + t^7.5/y + (g2*t^7.6)/y + t^7.6/(g3*y) + (2*g1^3*g2*g3*t^8.17)/y + (2*g1^3*g2^2*g3^2*t^8.17)/y + t^8.23/(g1^3*g2^2*g3*y) + t^8.79/(g2^2*y) + (4*g3*t^8.79)/(g2*y) + (g3^2*t^8.79)/y - t^8.9/(g2*y) - (g3*t^8.9)/y + (g1^6*g2^3*g3^2*t^8.94)/y + (g1^6*g2^4*g3^3*t^8.94)/y - t^4.5*y - t^6.*y - g1^3*g2^2*g3*t^6.77*y - (t^7.4*y)/g2 - g3*t^7.4*y + t^7.5*y + g2*t^7.6*y + (t^7.6*y)/g3 + 2*g1^3*g2*g3*t^8.17*y + 2*g1^3*g2^2*g3^2*t^8.17*y + (t^8.23*y)/(g1^3*g2^2*g3) + (t^8.79*y)/g2^2 + (4*g3*t^8.79*y)/g2 + g3^2*t^8.79*y - (t^8.9*y)/g2 - g3*t^8.9*y + g1^6*g2^3*g3^2*t^8.94*y + g1^6*g2^4*g3^3*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57511 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 0.9709 1.1639 0.8342 [X:[1.5437, 1.4563, 1.5437, 1.4563], M:[0.9563, 0.9563], q:[0.2069, 0.2944], qb:[0.2494, 0.2494], phi:[0.5]] 4*t^2.87 + t^3. + t^3.62 + 2*t^3.74 + t^3.89 + 4*t^4.37 + t^4.5 + 4*t^4.63 + t^5.12 + 2*t^5.24 + t^5.39 + 9*t^5.74 + 2*t^5.87 - 6*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail