Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60580 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.2273 1.4318 0.8571 [X:[1.4545], M:[0.9091], q:[0.7273, 0.1818], qb:[0.5455, 0.3636], phi:[0.3636]] [X:[[6]], M:[[-4]], q:[[-8], [-2]], qb:[[5], [-4]], phi:[[1]]] 1 {a: 27/22, c: 63/44, X1: 16/11, M1: 10/11, q1: 8/11, q2: 2/11, qb1: 6/11, qb2: 4/11, phi1: 4/11}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ ${}\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ 2}\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$ 7 2*t^2.18 + 2*t^2.73 + 2*t^3.27 + 2*t^3.82 + 6*t^4.36 + 7*t^4.91 + 8*t^5.45 + 7*t^6. + 14*t^6.55 + 17*t^7.09 + 20*t^7.64 + 20*t^8.18 + 26*t^8.73 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - t^6.82/y - (2*t^7.36)/y + (2*t^7.91)/y - t^4.09*y - t^5.18*y - 2*t^6.27*y - t^6.82*y - 2*t^7.36*y + 2*t^7.91*y g1^2*t^2.18 + g1^3*t^2.18 + t^2.73/g1^5 + t^2.73/g1^4 + t^3.27/g1^12 + g1^3*t^3.27 + t^3.82/g1^4 + t^3.82/g1^3 + (2*t^4.36)/g1^11 + g1^4*t^4.36 + 2*g1^5*t^4.36 + g1^6*t^4.36 + (2*t^4.91)/g1^3 + (4*t^4.91)/g1^2 + t^4.91/g1 + (4*t^5.45)/g1^10 + t^5.45/g1^9 + t^5.45/g1^8 + g1^5*t^5.45 + g1^6*t^5.45 - 3*t^6. + (2*t^6.)/g1^17 + t^6./g1^16 + (2*t^6.)/g1^2 + (5*t^6.)/g1 + t^6.55/g1^24 + (6*t^6.55)/g1^9 + (2*t^6.55)/g1^8 + 2*g1^6*t^6.55 + 2*g1^7*t^6.55 + 2*g1^8*t^6.55 - g1^9*t^6.55 + 8*t^7.09 + (4*t^7.09)/g1^16 + (2*t^7.09)/g1^15 + (3*t^7.09)/g1 + (2*t^7.64)/g1^23 + (8*t^7.64)/g1^8 + (6*t^7.64)/g1^7 + t^7.64/g1^6 + t^7.64/g1^5 + g1^7*t^7.64 + 2*g1^8*t^7.64 + 2*g1^9*t^7.64 - 3*g1^10*t^7.64 + 3*t^8.18 + (8*t^8.18)/g1^15 + (7*t^8.18)/g1^14 - t^8.18/g1^13 + t^8.18/g1^12 + 9*g1*t^8.18 - 3*g1^2*t^8.18 - 4*g1^3*t^8.18 + g1^18*t^8.18 - g1^19*t^8.18 + (7*t^8.73)/g1^22 + (2*t^8.73)/g1^21 + t^8.73/g1^20 + (10*t^8.73)/g1^7 + (9*t^8.73)/g1^6 - (3*t^8.73)/g1^5 - (6*t^8.73)/g1^4 + 2*g1^8*t^8.73 + 3*g1^9*t^8.73 + 3*g1^10*t^8.73 - 3*g1^11*t^8.73 + g1^12*t^8.73 - (g1*t^4.09)/y - (g1^2*t^5.18)/y - (g1^3*t^6.27)/y - (g1^4*t^6.27)/y - t^6.82/(g1^3*y) - t^7.36/(g1^11*y) - (2*g1^4*t^7.36)/y + (g1^5*t^7.36)/y + (2*t^7.91)/(g1*y) + (2*t^8.45)/(g1^9*y) - (g1^5*t^8.45)/y - (g1^7*t^8.45)/y - g1*t^4.09*y - g1^2*t^5.18*y - g1^3*t^6.27*y - g1^4*t^6.27*y - (t^6.82*y)/g1^3 - (t^7.36*y)/g1^11 - 2*g1^4*t^7.36*y + g1^5*t^7.36*y + (2*t^7.91*y)/g1 + (2*t^8.45*y)/g1^9 - g1^5*t^8.45*y - g1^7*t^8.45*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60980 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{2}\phi_{1}^{2}$ 1.2074 1.3954 0.8653 [X:[1.4573], M:[0.9071, 1.2714], q:[0.7236, 0.1809], qb:[0.5477, 0.3618], phi:[0.3643]] t^2.19 + 2*t^2.72 + t^3.26 + t^3.28 + 3*t^3.81 + 2*t^4.35 + 2*t^4.37 + 5*t^4.91 + 5*t^5.44 + t^5.46 + 3*t^5.98 + 3*t^6. - t^4.09/y - t^5.19/y - t^4.09*y - t^5.19*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57484 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.2331 1.4401 0.8563 [X:[1.4718], M:[0.8962], q:[0.7389, 0.2107], qb:[0.5252, 0.3176], phi:[0.3679]] 2*t^2.21 + 2*t^2.69 + t^3.17 + t^3.31 + 2*t^3.79 + t^4.27 + 4*t^4.42 + 2*t^4.58 + 5*t^4.9 + 2*t^5.21 + 5*t^5.38 + t^5.52 + 2*t^5.69 + 2*t^5.86 + 3*t^6. - t^4.1/y - t^5.21/y - t^4.1*y - t^5.21*y detail