Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60554 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 1.3605 1.573 0.8649 [X:[], M:[1.2, 1.2, 1.2], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] [X:[], M:[[1, 0, 1], [0, 0, 0], [-1, 0, -1]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] 3 {a: 2721/2000, c: 1573/1000, M1: 6/5, M2: 6/5, M3: 6/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 12 2*t^2.4 + 8*t^3.6 + 11*t^4.8 + 12*t^6. + 48*t^7.2 + 45*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - (4*t^7.8)/y - t^4.2*y - t^5.4*y - 2*t^6.6*y - 4*t^7.8*y t^2.4/(g1*g2) + g1*g2*t^2.4 + 2*t^3.6 + t^3.6/(g1*g2) + g1*g2*t^3.6 + (2*t^3.6)/(g1*g3) + 2*g1*g3*t^3.6 + t^4.8 + t^4.8/(g1^2*g2^2) + t^4.8/(g1*g2) + g1*g2*t^4.8 + g1^2*g2^2*t^4.8 + t^4.8/(g1*g2^2*g3^2) + t^4.8/(g1*g3) + (g1*t^4.8)/(g2*g3) + g1*g3*t^4.8 + g2^2*g3*t^4.8 + g2*g3^2*t^4.8 - 2*t^6. + t^6./(g1^2*g2^2) + (2*t^6.)/(g1*g2) + 2*g1*g2*t^6. + g1^2*g2^2*t^6. + t^6./(g1*g2^2*g3^2) + t^6./(g1^2*g2*g3) + (g1*t^6.)/(g2*g3) + (g2*t^6.)/g3 + (g3*t^6.)/g2 + g1^2*g2*g3*t^6. + g2^2*g3*t^6. + g2*g3^2*t^6. + 6*t^7.2 + g1^3*t^7.2 + t^7.2/(g1^3*g2^3) + (2*t^7.2)/(g1^2*g2^2) + (2*t^7.2)/(g1*g2) + 2*g1*g2*t^7.2 + 2*g1^2*g2^2*t^7.2 + g2^3*t^7.2 + g1^3*g2^3*t^7.2 + t^7.2/(g1^3*g2^3*g3^3) + (3*t^7.2)/(g1^2*g3^2) + t^7.2/(g1^2*g2^3*g3^2) + t^7.2/(g1*g2^2*g3^2) + (3*t^7.2)/(g1*g3) + (g1^2*t^7.2)/g3 + (2*t^7.2)/(g1^2*g2*g3) + (g1*t^7.2)/(g2*g3) + (2*g2*t^7.2)/g3 + 3*g1*g3*t^7.2 + (2*g3*t^7.2)/g2 + 2*g1^2*g2*g3*t^7.2 + g2^2*g3*t^7.2 + g1*g2^3*g3*t^7.2 + (g3^2*t^7.2)/g1 + 3*g1^2*g3^2*t^7.2 + g2*g3^2*t^7.2 + g3^3*t^7.2 + 5*t^8.4 + t^8.4/(g1^3*g2^3) + (3*t^8.4)/(g1^2*g2^2) - t^8.4/(g1*g2) + (g1^2*t^8.4)/g2 - g1*g2*t^8.4 + (g2^2*t^8.4)/g1 + 3*g1^2*g2^2*t^8.4 + g1^3*g2^3*t^8.4 + t^8.4/(g1^2*g2^2*g3^3) + (2*t^8.4)/(g1^2*g3^2) + t^8.4/(g1^2*g2^3*g3^2) + t^8.4/(g1*g2^2*g3^2) + t^8.4/(g2*g3^2) + t^8.4/(g1*g3) + (g1^2*t^8.4)/g3 + t^8.4/(g2^2*g3) + t^8.4/(g1^3*g2^2*g3) + (2*t^8.4)/(g1^2*g2*g3) + (g1*t^8.4)/(g2*g3) + (2*g2*t^8.4)/g3 + (g1*g2^2*t^8.4)/g3 + g1*g3*t^8.4 + (g3*t^8.4)/(g1*g2^2) + (2*g3*t^8.4)/g2 + (g2*g3*t^8.4)/g1 + 2*g1^2*g2*g3*t^8.4 + g2^2*g3*t^8.4 + g1^3*g2^2*g3*t^8.4 + g1*g2^3*g3*t^8.4 + (g3^2*t^8.4)/g1 + 2*g1^2*g3^2*t^8.4 + g2*g3^2*t^8.4 + g1*g2^2*g3^2*t^8.4 + g1*g2*g3^3*t^8.4 - t^4.2/y - t^5.4/y - t^6.6/(g1*g2*y) - (g1*g2*t^6.6)/y - t^7.8/(g1*g2*y) - (g1*g2*t^7.8)/y - t^7.8/(g1*g3*y) - (g1*g3*t^7.8)/y - t^4.2*y - t^5.4*y - (t^6.6*y)/(g1*g2) - g1*g2*t^6.6*y - (t^7.8*y)/(g1*g2) - g1*g2*t^7.8*y - (t^7.8*y)/(g1*g3) - g1*g3*t^7.8*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57446 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.3777 1.604 0.8589 [M:[1.1779, 1.2], q:[0.411, 0.389], qb:[0.411, 0.389], phi:[0.4]] t^2.334 + 2*t^2.4 + 2*t^3.534 + 4*t^3.6 + t^3.666 + t^4.668 + 3*t^4.734 + 2*t^4.767 + 5*t^4.8 + 2*t^4.833 + t^4.866 + 2*t^5.868 + 6*t^5.934 + 2*t^5.967 + 5*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail