Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60507 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.5575 | 1.8496 | 0.8421 | [X:[], M:[0.6736, 0.6736, 0.6736, 0.6736], q:[0.4948, 0.4948], qb:[0.4948, 0.4948], phi:[0.3368]] | [X:[], M:[[-5, 1, -5, 1], [1, -5, -5, 1], [-5, 1, 1, -5], [1, -5, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | -4 | 5*t^2.02 + 4*t^2.97 + t^3.03 + 15*t^4.04 + 24*t^4.99 + 5*t^5.05 + 4*t^5.46 + 10*t^5.94 - 4*t^6. + 36*t^6.06 + 4*t^6.47 + 73*t^7.01 + 15*t^7.07 + 24*t^7.48 + 61*t^7.96 - 22*t^8.02 + 75*t^8.08 + 16*t^8.43 + 8*t^8.49 + 20*t^8.91 - 27*t^8.97 - t^4.01/y - t^5.02/y - (5*t^6.03)/y - (4*t^6.98)/y + (4*t^7.04)/y + (21*t^7.99)/y - (11*t^8.05)/y + (6*t^8.94)/y - t^4.01*y - t^5.02*y - 5*t^6.03*y - 4*t^6.98*y + 4*t^7.04*y + 21*t^7.99*y - 11*t^8.05*y + 6*t^8.94*y | (g1*g3*t^2.02)/(g2^5*g4^5) + (g2*g3*t^2.02)/(g1^5*g4^5) + t^2.02/(g1^2*g2^2*g3^2*g4^2) + (g1*g4*t^2.02)/(g2^5*g3^5) + (g2*g4*t^2.02)/(g1^5*g3^5) + g1^6*g3^6*t^2.97 + g2^6*g3^6*t^2.97 + g1^6*g4^6*t^2.97 + g2^6*g4^6*t^2.97 + t^3.03/(g1^3*g2^3*g3^3*g4^3) + (g1^2*g3^2*t^4.04)/(g2^10*g4^10) + (g3^2*t^4.04)/(g1^4*g2^4*g4^10) + (g2^2*g3^2*t^4.04)/(g1^10*g4^10) + t^4.04/(g1*g2^7*g3*g4^7) + t^4.04/(g1^7*g2*g3*g4^7) + (g1^2*t^4.04)/(g2^10*g3^4*g4^4) + (3*t^4.04)/(g1^4*g2^4*g3^4*g4^4) + (g2^2*t^4.04)/(g1^10*g3^4*g4^4) + t^4.04/(g1*g2^7*g3^7*g4) + t^4.04/(g1^7*g2*g3^7*g4) + (g1^2*g4^2*t^4.04)/(g2^10*g3^10) + (g4^2*t^4.04)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.04)/(g1^10*g3^10) + (g1^7*g3^7*t^4.99)/(g2^5*g4^5) + (2*g1*g2*g3^7*t^4.99)/g4^5 + (g2^7*g3^7*t^4.99)/(g1^5*g4^5) + (2*g1^4*g3^4*t^4.99)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.99)/(g1^2*g4^2) + (2*g1^7*g3*g4*t^4.99)/g2^5 + 4*g1*g2*g3*g4*t^4.99 + (2*g2^7*g3*g4*t^4.99)/g1^5 + (2*g1^4*g4^4*t^4.99)/(g2^2*g3^2) + (2*g2^4*g4^4*t^4.99)/(g1^2*g3^2) + (g1^7*g4^7*t^4.99)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.99)/g3^5 + (g2^7*g4^7*t^4.99)/(g1^5*g3^5) + t^5.05/(g1^2*g2^8*g3^2*g4^8) + t^5.05/(g1^8*g2^2*g3^2*g4^8) + t^5.05/(g1^5*g2^5*g3^5*g4^5) + t^5.05/(g1^2*g2^8*g3^8*g4^2) + t^5.05/(g1^8*g2^2*g3^8*g4^2) + (g1^11*g2^5*t^5.46)/(g3*g4) + (g1^5*g2^11*t^5.46)/(g3*g4) + (g3^11*g4^5*t^5.46)/(g1*g2) + (g3^5*g4^11*t^5.46)/(g1*g2) + g1^12*g3^12*t^5.94 + g1^6*g2^6*g3^12*t^5.94 + g2^12*g3^12*t^5.94 + g1^12*g3^6*g4^6*t^5.94 + 2*g1^6*g2^6*g3^6*g4^6*t^5.94 + g2^12*g3^6*g4^6*t^5.94 + g1^12*g4^12*t^5.94 + g1^6*g2^6*g4^12*t^5.94 + g2^12*g4^12*t^5.94 - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (g2^3*g4^3*t^6.)/(g1^3*g3^3) - (g4^6*t^6.)/g3^6 + t^6.06/(g1^12*g3^12) + t^6.06/(g2^12*g3^12) + t^6.06/(g1^6*g2^6*g3^12) + (g1^3*g3^3*t^6.06)/(g2^15*g4^15) + (g3^3*t^6.06)/(g1^3*g2^9*g4^15) + (g3^3*t^6.06)/(g1^9*g2^3*g4^15) + (g2^3*g3^3*t^6.06)/(g1^15*g4^15) + t^6.06/(g1^12*g4^12) + t^6.06/(g2^12*g4^12) + t^6.06/(g1^6*g2^6*g4^12) + (g1^3*t^6.06)/(g2^15*g3^3*g4^9) + (3*t^6.06)/(g1^3*g2^9*g3^3*g4^9) + (3*t^6.06)/(g1^9*g2^3*g3^3*g4^9) + (g2^3*t^6.06)/(g1^15*g3^3*g4^9) + t^6.06/(g1^12*g3^6*g4^6) + t^6.06/(g2^12*g3^6*g4^6) + (4*t^6.06)/(g1^6*g2^6*g3^6*g4^6) + (g1^3*t^6.06)/(g2^15*g3^9*g4^3) + (3*t^6.06)/(g1^3*g2^9*g3^9*g4^3) + (3*t^6.06)/(g1^9*g2^3*g3^9*g4^3) + (g2^3*t^6.06)/(g1^15*g3^9*g4^3) + (g1^3*g4^3*t^6.06)/(g2^15*g3^15) + (g4^3*t^6.06)/(g1^3*g2^9*g3^15) + (g4^3*t^6.06)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.06)/(g1^15*g3^15) + (g1^10*g2^4*t^6.47)/(g3^2*g4^2) + (g1^4*g2^10*t^6.47)/(g3^2*g4^2) + (g3^10*g4^4*t^6.47)/(g1^2*g2^2) + (g3^4*g4^10*t^6.47)/(g1^2*g2^2) + (g1^8*g3^8*t^7.01)/(g2^10*g4^10) + (2*g1^2*g3^8*t^7.01)/(g2^4*g4^10) + (2*g2^2*g3^8*t^7.01)/(g1^4*g4^10) + (g2^8*g3^8*t^7.01)/(g1^10*g4^10) + (2*g1^5*g3^5*t^7.01)/(g2^7*g4^7) + (3*g3^5*t^7.01)/(g1*g2*g4^7) + (2*g2^5*g3^5*t^7.01)/(g1^7*g4^7) + (2*g1^8*g3^2*t^7.01)/(g2^10*g4^4) + (7*g1^2*g3^2*t^7.01)/(g2^4*g4^4) + (7*g2^2*g3^2*t^7.01)/(g1^4*g4^4) + (2*g2^8*g3^2*t^7.01)/(g1^10*g4^4) + (3*g1^5*t^7.01)/(g2^7*g3*g4) + (5*t^7.01)/(g1*g2*g3*g4) + (3*g2^5*t^7.01)/(g1^7*g3*g4) + (2*g1^8*g4^2*t^7.01)/(g2^10*g3^4) + (7*g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (7*g2^2*g4^2*t^7.01)/(g1^4*g3^4) + (2*g2^8*g4^2*t^7.01)/(g1^10*g3^4) + (2*g1^5*g4^5*t^7.01)/(g2^7*g3^7) + (3*g4^5*t^7.01)/(g1*g2*g3^7) + (2*g2^5*g4^5*t^7.01)/(g1^7*g3^7) + (g1^8*g4^8*t^7.01)/(g2^10*g3^10) + (2*g1^2*g4^8*t^7.01)/(g2^4*g3^10) + (2*g2^2*g4^8*t^7.01)/(g1^4*g3^10) + (g2^8*g4^8*t^7.01)/(g1^10*g3^10) + t^7.07/(g1*g2^13*g3*g4^13) + t^7.07/(g1^7*g2^7*g3*g4^13) + t^7.07/(g1^13*g2*g3*g4^13) + t^7.07/(g1^4*g2^10*g3^4*g4^10) + t^7.07/(g1^10*g2^4*g3^4*g4^10) + t^7.07/(g1*g2^13*g3^7*g4^7) + (3*t^7.07)/(g1^7*g2^7*g3^7*g4^7) + t^7.07/(g1^13*g2*g3^7*g4^7) + t^7.07/(g1^4*g2^10*g3^10*g4^4) + t^7.07/(g1^10*g2^4*g3^10*g4^4) + t^7.07/(g1*g2^13*g3^13*g4) + t^7.07/(g1^7*g2^7*g3^13*g4) + t^7.07/(g1^13*g2*g3^13*g4) + (g1^12*t^7.48)/g3^6 + (g1^6*g2^6*t^7.48)/g3^6 + (g2^12*t^7.48)/g3^6 + (g3^12*t^7.48)/g1^6 + (g3^12*t^7.48)/g2^6 + (g1^12*t^7.48)/g4^6 + (g1^6*g2^6*t^7.48)/g4^6 + (g2^12*t^7.48)/g4^6 + (g1^15*t^7.48)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g2^15*t^7.48)/(g1^3*g3^3*g4^3) + (g3^15*t^7.48)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.48)/(g1^3*g2^3) + (g3^6*g4^6*t^7.48)/g1^6 + (g3^6*g4^6*t^7.48)/g2^6 + (2*g3^3*g4^9*t^7.48)/(g1^3*g2^3) + (g4^12*t^7.48)/g1^6 + (g4^12*t^7.48)/g2^6 + (g4^15*t^7.48)/(g1^3*g2^3*g3^3) + (g1^13*g3^13*t^7.96)/(g2^5*g4^5) + (2*g1^7*g2*g3^13*t^7.96)/g4^5 + (2*g1*g2^7*g3^13*t^7.96)/g4^5 + (g2^13*g3^13*t^7.96)/(g1^5*g4^5) + (2*g1^10*g3^10*t^7.96)/(g2^2*g4^2) + (3*g1^4*g2^4*g3^10*t^7.96)/g4^2 + (2*g2^10*g3^10*t^7.96)/(g1^2*g4^2) + (2*g1^13*g3^7*g4*t^7.96)/g2^5 + 4*g1^7*g2*g3^7*g4*t^7.96 + 4*g1*g2^7*g3^7*g4*t^7.96 + (2*g2^13*g3^7*g4*t^7.96)/g1^5 + (3*g1^10*g3^4*g4^4*t^7.96)/g2^2 + 5*g1^4*g2^4*g3^4*g4^4*t^7.96 + (3*g2^10*g3^4*g4^4*t^7.96)/g1^2 + (2*g1^13*g3*g4^7*t^7.96)/g2^5 + 4*g1^7*g2*g3*g4^7*t^7.96 + 4*g1*g2^7*g3*g4^7*t^7.96 + (2*g2^13*g3*g4^7*t^7.96)/g1^5 + (2*g1^10*g4^10*t^7.96)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.96)/g3^2 + (2*g2^10*g4^10*t^7.96)/(g1^2*g3^2) + (g1^13*g4^13*t^7.96)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.96)/g3^5 + (2*g1*g2^7*g4^13*t^7.96)/g3^5 + (g2^13*g4^13*t^7.96)/(g1^5*g3^5) - (g1*g3^7*t^8.02)/(g2^5*g4^11) - (g2*g3^7*t^8.02)/(g1^5*g4^11) + (g1^4*g3^4*t^8.02)/(g2^8*g4^8) + (g2^4*g3^4*t^8.02)/(g1^8*g4^8) - (g1^7*g3*t^8.02)/(g2^11*g4^5) - (4*g1*g3*t^8.02)/(g2^5*g4^5) - (4*g2*g3*t^8.02)/(g1^5*g4^5) - (g2^7*g3*t^8.02)/(g1^11*g4^5) - (2*t^8.02)/(g1^2*g2^2*g3^2*g4^2) - (g1^7*g4*t^8.02)/(g2^11*g3^5) - (4*g1*g4*t^8.02)/(g2^5*g3^5) - (4*g2*g4*t^8.02)/(g1^5*g3^5) - (g2^7*g4*t^8.02)/(g1^11*g3^5) + (g1^4*g4^4*t^8.02)/(g2^8*g3^8) + (g2^4*g4^4*t^8.02)/(g1^8*g3^8) - (g1*g4^7*t^8.02)/(g2^5*g3^11) - (g2*g4^7*t^8.02)/(g1^5*g3^11) + (g1^4*g3^4*t^8.08)/(g2^20*g4^20) + (g3^4*t^8.08)/(g1^2*g2^14*g4^20) + (g3^4*t^8.08)/(g1^8*g2^8*g4^20) + (g3^4*t^8.08)/(g1^14*g2^2*g4^20) + (g2^4*g3^4*t^8.08)/(g1^20*g4^20) + (g1*g3*t^8.08)/(g2^17*g4^17) + (g3*t^8.08)/(g1^5*g2^11*g4^17) + (g3*t^8.08)/(g1^11*g2^5*g4^17) + (g2*g3*t^8.08)/(g1^17*g4^17) + (g1^4*t^8.08)/(g2^20*g3^2*g4^14) + (3*t^8.08)/(g1^2*g2^14*g3^2*g4^14) + (3*t^8.08)/(g1^8*g2^8*g3^2*g4^14) + (3*t^8.08)/(g1^14*g2^2*g3^2*g4^14) + (g2^4*t^8.08)/(g1^20*g3^2*g4^14) + (g1*t^8.08)/(g2^17*g3^5*g4^11) + (4*t^8.08)/(g1^5*g2^11*g3^5*g4^11) + (4*t^8.08)/(g1^11*g2^5*g3^5*g4^11) + (g2*t^8.08)/(g1^17*g3^5*g4^11) + (g1^4*t^8.08)/(g2^20*g3^8*g4^8) + (3*t^8.08)/(g1^2*g2^14*g3^8*g4^8) + (7*t^8.08)/(g1^8*g2^8*g3^8*g4^8) + (3*t^8.08)/(g1^14*g2^2*g3^8*g4^8) + (g2^4*t^8.08)/(g1^20*g3^8*g4^8) + (g1*t^8.08)/(g2^17*g3^11*g4^5) + (4*t^8.08)/(g1^5*g2^11*g3^11*g4^5) + (4*t^8.08)/(g1^11*g2^5*g3^11*g4^5) + (g2*t^8.08)/(g1^17*g3^11*g4^5) + (g1^4*t^8.08)/(g2^20*g3^14*g4^2) + (3*t^8.08)/(g1^2*g2^14*g3^14*g4^2) + (3*t^8.08)/(g1^8*g2^8*g3^14*g4^2) + (3*t^8.08)/(g1^14*g2^2*g3^14*g4^2) + (g2^4*t^8.08)/(g1^20*g3^14*g4^2) + (g1*g4*t^8.08)/(g2^17*g3^17) + (g4*t^8.08)/(g1^5*g2^11*g3^17) + (g4*t^8.08)/(g1^11*g2^5*g3^17) + (g2*g4*t^8.08)/(g1^17*g3^17) + (g1^4*g4^4*t^8.08)/(g2^20*g3^20) + (g4^4*t^8.08)/(g1^2*g2^14*g3^20) + (g4^4*t^8.08)/(g1^8*g2^8*g3^20) + (g4^4*t^8.08)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.08)/(g1^20*g3^20) + (g1^17*g2^5*g3^5*t^8.43)/g4 + (2*g1^11*g2^11*g3^5*t^8.43)/g4 + (g1^5*g2^17*g3^5*t^8.43)/g4 + (g1^17*g2^5*g4^5*t^8.43)/g3 + (2*g1^11*g2^11*g4^5*t^8.43)/g3 + (g1^5*g2^17*g4^5*t^8.43)/g3 + (g1^5*g3^17*g4^5*t^8.43)/g2 + (g2^5*g3^17*g4^5*t^8.43)/g1 + (2*g1^5*g3^11*g4^11*t^8.43)/g2 + (2*g2^5*g3^11*g4^11*t^8.43)/g1 + (g1^5*g3^5*g4^17*t^8.43)/g2 + (g2^5*g3^5*g4^17*t^8.43)/g1 + (2*g1^8*g2^2*t^8.49)/(g3^4*g4^4) + (2*g1^2*g2^8*t^8.49)/(g3^4*g4^4) + (2*g3^8*g4^2*t^8.49)/(g1^4*g2^4) + (2*g3^2*g4^8*t^8.49)/(g1^4*g2^4) + g1^18*g3^18*t^8.91 + g1^12*g2^6*g3^18*t^8.91 + g1^6*g2^12*g3^18*t^8.91 + g2^18*g3^18*t^8.91 + g1^18*g3^12*g4^6*t^8.91 + 2*g1^12*g2^6*g3^12*g4^6*t^8.91 + 2*g1^6*g2^12*g3^12*g4^6*t^8.91 + g2^18*g3^12*g4^6*t^8.91 + g1^18*g3^6*g4^12*t^8.91 + 2*g1^12*g2^6*g3^6*g4^12*t^8.91 + 2*g1^6*g2^12*g3^6*g4^12*t^8.91 + g2^18*g3^6*g4^12*t^8.91 + g1^18*g4^18*t^8.91 + g1^12*g2^6*g4^18*t^8.91 + g1^6*g2^12*g4^18*t^8.91 + g2^18*g4^18*t^8.91 - 7*g1^6*g3^6*t^8.97 - (g1^12*g3^6*t^8.97)/g2^6 - 7*g2^6*g3^6*t^8.97 - (g2^12*g3^6*t^8.97)/g1^6 - (g1^6*g3^12*t^8.97)/g4^6 - (g2^6*g3^12*t^8.97)/g4^6 + (g1^9*g3^9*t^8.97)/(g2^3*g4^3) + (g1^3*g2^3*g3^9*t^8.97)/g4^3 + (g2^9*g3^9*t^8.97)/(g1^3*g4^3) + (g1^9*g3^3*g4^3*t^8.97)/g2^3 + g1^3*g2^3*g3^3*g4^3*t^8.97 + (g2^9*g3^3*g4^3*t^8.97)/g1^3 - 7*g1^6*g4^6*t^8.97 - (g1^12*g4^6*t^8.97)/g2^6 - 7*g2^6*g4^6*t^8.97 - (g2^12*g4^6*t^8.97)/g1^6 + (g1^9*g4^9*t^8.97)/(g2^3*g3^3) + (g1^3*g2^3*g4^9*t^8.97)/g3^3 + (g2^9*g4^9*t^8.97)/(g1^3*g3^3) - (g1^6*g4^12*t^8.97)/g3^6 - (g2^6*g4^12*t^8.97)/g3^6 - t^4.01/(g1*g2*g3*g4*y) - t^5.02/(g1^2*g2^2*g3^2*g4^2*y) - t^6.03/(g1^6*g3^6*y) - t^6.03/(g2^6*g3^6*y) - t^6.03/(g1^6*g4^6*y) - t^6.03/(g2^6*g4^6*y) - t^6.03/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.98)/(g2*g4*y) - (g2^5*g3^5*t^6.98)/(g1*g4*y) - (g1^5*g4^5*t^6.98)/(g2*g3*y) - (g2^5*g4^5*t^6.98)/(g1*g3*y) + (g3^2*t^7.04)/(g1^4*g2^4*g4^10*y) + (g1^2*t^7.04)/(g2^10*g3^4*g4^4*y) + (g2^2*t^7.04)/(g1^10*g3^4*g4^4*y) + (g4^2*t^7.04)/(g1^4*g2^4*g3^10*y) + (g1^7*g3^7*t^7.99)/(g2^5*g4^5*y) + (2*g1*g2*g3^7*t^7.99)/(g4^5*y) + (g2^7*g3^7*t^7.99)/(g1^5*g4^5*y) + (g1^4*g3^4*t^7.99)/(g2^2*g4^2*y) + (g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) + (2*g1^7*g3*g4*t^7.99)/(g2^5*y) + (5*g1*g2*g3*g4*t^7.99)/y + (2*g2^7*g3*g4*t^7.99)/(g1^5*y) + (g1^4*g4^4*t^7.99)/(g2^2*g3^2*y) + (g2^4*g4^4*t^7.99)/(g1^2*g3^2*y) + (g1^7*g4^7*t^7.99)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.99)/(g3^5*y) + (g2^7*g4^7*t^7.99)/(g1^5*g3^5*y) - (g1*g3*t^8.05)/(g2^11*g4^11*y) - (g3*t^8.05)/(g1^5*g2^5*g4^11*y) - (g2*g3*t^8.05)/(g1^11*g4^11*y) - (g1*t^8.05)/(g2^11*g3^5*g4^5*y) - (3*t^8.05)/(g1^5*g2^5*g3^5*g4^5*y) - (g2*t^8.05)/(g1^11*g3^5*g4^5*y) - (g1*g4*t^8.05)/(g2^11*g3^11*y) - (g4*t^8.05)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.05)/(g1^11*g3^11*y) + (g1^6*g2^6*g3^12*t^8.94)/y + (g1^12*g3^6*g4^6*t^8.94)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.94)/y + (g2^12*g3^6*g4^6*t^8.94)/y + (g1^6*g2^6*g4^12*t^8.94)/y - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.02*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.03*y)/(g1^6*g3^6) - (t^6.03*y)/(g2^6*g3^6) - (t^6.03*y)/(g1^6*g4^6) - (t^6.03*y)/(g2^6*g4^6) - (t^6.03*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.98*y)/(g2*g4) - (g2^5*g3^5*t^6.98*y)/(g1*g4) - (g1^5*g4^5*t^6.98*y)/(g2*g3) - (g2^5*g4^5*t^6.98*y)/(g1*g3) + (g3^2*t^7.04*y)/(g1^4*g2^4*g4^10) + (g1^2*t^7.04*y)/(g2^10*g3^4*g4^4) + (g2^2*t^7.04*y)/(g1^10*g3^4*g4^4) + (g4^2*t^7.04*y)/(g1^4*g2^4*g3^10) + (g1^7*g3^7*t^7.99*y)/(g2^5*g4^5) + (2*g1*g2*g3^7*t^7.99*y)/g4^5 + (g2^7*g3^7*t^7.99*y)/(g1^5*g4^5) + (g1^4*g3^4*t^7.99*y)/(g2^2*g4^2) + (g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) + (2*g1^7*g3*g4*t^7.99*y)/g2^5 + 5*g1*g2*g3*g4*t^7.99*y + (2*g2^7*g3*g4*t^7.99*y)/g1^5 + (g1^4*g4^4*t^7.99*y)/(g2^2*g3^2) + (g2^4*g4^4*t^7.99*y)/(g1^2*g3^2) + (g1^7*g4^7*t^7.99*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.99*y)/g3^5 + (g2^7*g4^7*t^7.99*y)/(g1^5*g3^5) - (g1*g3*t^8.05*y)/(g2^11*g4^11) - (g3*t^8.05*y)/(g1^5*g2^5*g4^11) - (g2*g3*t^8.05*y)/(g1^11*g4^11) - (g1*t^8.05*y)/(g2^11*g3^5*g4^5) - (3*t^8.05*y)/(g1^5*g2^5*g3^5*g4^5) - (g2*t^8.05*y)/(g1^11*g3^5*g4^5) - (g1*g4*t^8.05*y)/(g2^11*g3^11) - (g4*t^8.05*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.05*y)/(g1^11*g3^11) + g1^6*g2^6*g3^12*t^8.94*y + g1^12*g3^6*g4^6*t^8.94*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.94*y + g2^12*g3^6*g4^6*t^8.94*y + g1^6*g2^6*g4^12*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57638 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5367 | 1.8086 | 0.8497 | [X:[], M:[0.6727, 0.674, 0.674], q:[0.4951, 0.4938], qb:[0.4951, 0.4938], phi:[0.337]] | 4*t^2.02 + t^2.96 + 3*t^2.97 + t^3.03 + t^3.97 + 10*t^4.04 + 7*t^4.98 + 13*t^4.99 + t^5.05 + 3*t^5.06 + 4*t^5.46 + 7*t^5.93 + 3*t^5.94 + t^5.99 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |