Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60506 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.4543 1.6455 0.8838 [X:[1.3268], M:[0.9902, 0.9902], q:[0.5149, 0.4756], qb:[0.4949, 0.4949], phi:[0.3366]] [X:[[0, 2]], M:[[0, 3], [0, 3]], q:[[-1, -3], [-1, 9]], qb:[[1, 0], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -4 2*t^2.91 + 2*t^2.97 + t^3.03 + 2*t^3.92 + t^3.98 + 2*t^4.04 + 2*t^4.93 + 2*t^5.05 + t^5.41 + 2*t^5.46 + t^5.53 + 3*t^5.82 + 3*t^5.88 + 5*t^5.94 - 4*t^6. + t^6.06 - t^6.12 + t^6.42 + 2*t^6.47 + t^6.54 + 4*t^6.83 + 5*t^6.89 + 8*t^6.95 + 2*t^7.07 - t^7.13 + t^7.31 - t^7.42 + t^7.43 + 4*t^7.48 - 2*t^7.49 - t^7.54 + t^7.55 + t^7.66 + 7*t^7.84 + 3*t^7.9 + 10*t^7.96 + 5*t^8.08 - t^8.14 + 2*t^8.32 + 4*t^8.38 + 3*t^8.44 + 2*t^8.49 - 2*t^8.5 - 4*t^8.55 + t^8.56 - 2*t^8.61 + 4*t^8.73 + 4*t^8.79 + 11*t^8.85 - 5*t^8.91 + 2*t^8.97 - t^4.01/y - t^5.02/y - (2*t^6.92)/y - (2*t^6.98)/y - t^7.04/y - (2*t^7.93)/y - (2*t^7.99)/y - t^8.05/y + t^8.82/y + (4*t^8.88)/y + t^8.94/y - t^4.01*y - t^5.02*y - 2*t^6.92*y - 2*t^6.98*y - t^7.04*y - 2*t^7.93*y - 2*t^7.99*y - t^8.05*y + t^8.82*y + 4*t^8.88*y + t^8.94*y 2*g2^9*t^2.91 + 2*g2^3*t^2.97 + t^3.03/g2^3 + 2*g2^8*t^3.92 + g2^2*t^3.98 + (2*t^4.04)/g2^4 + 2*g2^7*t^4.93 + (2*t^5.05)/g2^5 + (g2^14*t^5.41)/g1^3 + (2*g1^3*t^5.46)/g2 + (g2^2*t^5.53)/g1^3 + 3*g2^18*t^5.82 + 3*g2^12*t^5.88 + 5*g2^6*t^5.94 - 4*t^6. + t^6.06/g2^6 - t^6.12/g2^12 + (g2^13*t^6.42)/g1^3 + (2*g1^3*t^6.47)/g2^2 + (g2*t^6.54)/g1^3 + 4*g2^17*t^6.83 + 5*g2^11*t^6.89 + 8*g2^5*t^6.95 + (2*t^7.07)/g2^7 - t^7.13/g2^13 + (g2^24*t^7.31)/g1^3 - g1^3*g2^3*t^7.42 + (g2^12*t^7.43)/g1^3 + (4*g1^3*t^7.48)/g2^3 - (2*g2^6*t^7.49)/g1^3 - (g1^3*t^7.54)/g2^9 + t^7.55/g1^3 + t^7.66/(g1^3*g2^12) + 7*g2^16*t^7.84 + 3*g2^10*t^7.9 + 10*g2^4*t^7.96 + (5*t^8.08)/g2^8 - t^8.14/g2^14 + (2*g2^23*t^8.32)/g1^3 + 4*g1^3*g2^8*t^8.38 + (3*g2^11*t^8.44)/g1^3 + (2*g1^3*t^8.49)/g2^4 - (2*g2^5*t^8.5)/g1^3 - (4*g1^3*t^8.55)/g2^10 + t^8.56/(g1^3*g2) - (2*t^8.61)/(g1^3*g2^7) + 4*g2^27*t^8.73 + 4*g2^21*t^8.79 + 11*g2^15*t^8.85 - 5*g2^9*t^8.91 + 2*g2^3*t^8.97 - t^4.01/(g2*y) - t^5.02/(g2^2*y) - (2*g2^8*t^6.92)/y - (2*g2^2*t^6.98)/y - t^7.04/(g2^4*y) - (2*g2^7*t^7.93)/y - (2*g2*t^7.99)/y - t^8.05/(g2^5*y) + (g2^18*t^8.82)/y + (4*g2^12*t^8.88)/y + (g2^6*t^8.94)/y - (t^4.01*y)/g2 - (t^5.02*y)/g2^2 - 2*g2^8*t^6.92*y - 2*g2^2*t^6.98*y - (t^7.04*y)/g2^4 - 2*g2^7*t^7.93*y - 2*g2*t^7.99*y - (t^8.05*y)/g2^5 + g2^18*t^8.82*y + 4*g2^12*t^8.88*y + g2^6*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57744 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4551 1.6491 0.8824 [X:[1.3219], M:[0.9829, 0.9829], q:[0.5085, 0.4744], qb:[0.5085, 0.4744], phi:[0.339]] t^2.85 + 4*t^2.95 + t^3.86 + 3*t^3.97 + t^4.07 + t^4.88 + 2*t^4.98 + t^5.09 + 2*t^5.39 + 2*t^5.49 + t^5.69 + 4*t^5.79 + 8*t^5.9 - 4*t^6. - t^4.02/y - t^5.03/y - t^4.02*y - t^5.03*y detail