Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60496 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.3449 1.5777 0.8524 [X:[], M:[0.9097], q:[0.2416, 0.4265], qb:[0.666, 0.4853], phi:[0.3634]] [X:[], M:[[9]], q:[[-13], [35]], qb:[[-11], [7]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${2}\phi_{1}^{3}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}^{3}q_{2}\tilde{q}_{2}$ 2 2*t^2.18 + t^2.72 + t^2.73 + t^2.74 + t^3.27 + t^3.28 + t^3.81 + t^3.82 + t^3.83 + 4*t^4.36 + 2*t^4.37 + 3*t^4.9 + 3*t^4.91 + 3*t^4.92 + 4*t^5.45 + 6*t^5.46 + t^5.47 + 3*t^5.99 + 2*t^6. + 4*t^6.01 + 8*t^6.54 + 9*t^6.55 + t^6.56 + 6*t^7.08 + 6*t^7.09 + 11*t^7.1 + 2*t^7.11 + 10*t^7.63 + 10*t^7.64 + 10*t^7.65 + 6*t^8.17 + 6*t^8.18 + 15*t^8.19 + 3*t^8.2 + t^8.21 + 14*t^8.72 + 6*t^8.73 + 15*t^8.74 + 2*t^8.75 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - t^6.81/y - t^6.82/y - t^6.83/y - t^7.36/y - t^7.37/y + t^7.9/y + (2*t^7.91)/y + t^7.92/y - t^8.45/y + (3*t^8.46)/y - t^4.09*y - t^5.18*y - 2*t^6.27*y - t^6.81*y - t^6.82*y - t^6.83*y - t^7.36*y - t^7.37*y + t^7.9*y + 2*t^7.91*y + t^7.92*y - t^8.45*y + 3*t^8.46*y (2*t^2.18)/g1^6 + t^2.72/g1^24 + g1^9*t^2.73 + g1^42*t^2.74 + t^3.27/g1^9 + g1^24*t^3.28 + t^3.81/g1^27 + g1^6*t^3.82 + g1^39*t^3.83 + (4*t^4.36)/g1^12 + g1^21*t^4.37 + g1^54*t^4.37 + (3*t^4.9)/g1^30 + 3*g1^3*t^4.91 + 3*g1^36*t^4.92 + t^5.45/g1^48 + (3*t^5.45)/g1^15 + 4*g1^18*t^5.46 + 2*g1^51*t^5.46 + g1^84*t^5.47 + (3*t^5.99)/g1^33 + 2*t^6. + 3*g1^33*t^6.01 + g1^66*t^6.01 + (8*t^6.54)/g1^18 + 4*g1^15*t^6.55 + 5*g1^48*t^6.55 + g1^81*t^6.56 + (6*t^7.08)/g1^36 + (6*t^7.09)/g1^3 + 8*g1^30*t^7.1 + 3*g1^63*t^7.1 + 2*g1^96*t^7.11 + (3*t^7.63)/g1^54 + (7*t^7.63)/g1^21 + 10*g1^12*t^7.64 + 6*g1^45*t^7.65 + 4*g1^78*t^7.65 + t^8.17/g1^72 + (5*t^8.17)/g1^39 + (6*t^8.18)/g1^6 + 9*g1^27*t^8.19 + 6*g1^60*t^8.19 + 3*g1^93*t^8.2 + g1^126*t^8.21 + (2*t^8.72)/g1^57 + (12*t^8.72)/g1^24 + 6*g1^9*t^8.73 + 10*g1^42*t^8.74 + 5*g1^75*t^8.74 + 2*g1^108*t^8.75 - t^4.09/(g1^3*y) - t^5.18/(g1^6*y) - (2*t^6.27)/(g1^9*y) - t^6.81/(g1^27*y) - (g1^6*t^6.82)/y - (g1^39*t^6.83)/y - t^7.36/(g1^12*y) - (g1^21*t^7.37)/y + t^7.9/(g1^30*y) + (2*g1^3*t^7.91)/y + (g1^36*t^7.92)/y - t^8.45/(g1^15*y) + (2*g1^18*t^8.46)/y + (g1^51*t^8.46)/y - (t^4.09*y)/g1^3 - (t^5.18*y)/g1^6 - (2*t^6.27*y)/g1^9 - (t^6.81*y)/g1^27 - g1^6*t^6.82*y - g1^39*t^6.83*y - (t^7.36*y)/g1^12 - g1^21*t^7.37*y + (t^7.9*y)/g1^30 + 2*g1^3*t^7.91*y + g1^36*t^7.92*y - (t^8.45*y)/g1^15 + 2*g1^18*t^8.46*y + g1^51*t^8.46*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57733 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4299 1.6663 0.8581 [X:[], M:[0.8964], q:[0.3877, 0.5019], qb:[0.5552, 0.348], phi:[0.3679]] 2*t^2.21 + t^2.55 + t^2.69 + t^2.83 + t^3.17 + t^3.31 + t^3.65 + t^3.93 + t^4.27 + 4*t^4.41 + 3*t^4.76 + t^4.86 + 2*t^4.9 + t^4.94 + 3*t^5.04 + t^5.1 + t^5.24 + t^5.28 + 4*t^5.38 + t^5.48 + 3*t^5.52 + t^5.72 + 4*t^5.86 + t^5.96 - 2*t^6. - t^4.1/y - t^5.21/y - t^4.1*y - t^5.21*y detail