Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60494 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.3808 | 1.6215 | 0.8515 | [X:[1.3704], M:[1.0, 0.7409, 0.7409], q:[0.3148, 0.5739], qb:[0.3148, 0.5739], phi:[0.3704]] | [X:[[0, 0, 1]], M:[[0, 0, 0], [-1, 1, 4], [1, -1, 0]], q:[[-1, 0, -1], [0, -1, -5]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -1 | 3*t^2.22 + 2*t^2.67 + t^3. + t^3.33 + t^3.44 + 2*t^4.11 + 6*t^4.45 + t^4.55 + 2*t^4.72 + 8*t^4.89 + t^5.22 + 3*t^5.33 + 2*t^5.5 + 3*t^5.56 + 6*t^5.67 + 2*t^5.83 - t^6. + 2*t^6.11 + 2*t^6.17 + 5*t^6.33 + t^6.44 + 2*t^6.61 + 11*t^6.67 + 5*t^6.78 + t^6.89 + 6*t^6.94 + 17*t^7.11 + 2*t^7.22 - 2*t^7.28 + 4*t^7.39 + 13*t^7.55 + 8*t^7.72 + 6*t^7.78 + 11*t^7.89 + 5*t^8. + 2*t^8.06 + 6*t^8.17 - 2*t^8.22 + 12*t^8.33 + 4*t^8.39 + 4*t^8.5 + 8*t^8.56 - 2*t^8.67 + 3*t^8.78 + 8*t^8.83 + 18*t^8.89 + 2*t^8.94 - t^4.11/y - t^5.22/y - (3*t^6.33)/y - (2*t^6.78)/y - t^7.45/y - t^7.55/y + (7*t^7.89)/y + t^8.22/y + t^8.33/y - (4*t^8.56)/y + (4*t^8.67)/y - t^4.11*y - t^5.22*y - 3*t^6.33*y - 2*t^6.78*y - t^7.45*y - t^7.55*y + 7*t^7.89*y + t^8.22*y + t^8.33*y - 4*t^8.56*y + 4*t^8.67*y | (g1*t^2.22)/g2 + g3^2*t^2.22 + (g2*g3^4*t^2.22)/g1 + (g1*t^2.67)/(g2*g3^5) + (g2*t^2.67)/(g1*g3) + t^3. + g3^3*t^3.33 + t^3.44/g3^5 + 2*g3*t^4.11 + (g1^2*t^4.45)/g2^2 + (g1*g3^2*t^4.45)/g2 + 2*g3^4*t^4.45 + (g2*g3^6*t^4.45)/g1 + (g2^2*g3^8*t^4.45)/g1^2 + t^4.55/g3^4 + t^4.72/(g1^2*g2*g3^6) + g1^2*g2*g3*t^4.72 + (g1^2*t^4.89)/(g2^2*g3^5) + (2*g1*t^4.89)/(g2*g3^3) + (2*t^4.89)/g3 + (2*g2*g3*t^4.89)/g1 + (g2^2*g3^3*t^4.89)/g1^2 + g3^2*t^5.22 + (g1^2*t^5.33)/(g2^2*g3^10) + t^5.33/g3^6 + (g2^2*t^5.33)/(g1^2*g3^2) + t^5.5/(g1*g2^2*g3^10) + g1*g2^2*g3*t^5.5 + (g1*g3^3*t^5.56)/g2 + g3^5*t^5.56 + (g2*g3^7*t^5.56)/g1 + (2*g1*t^5.67)/(g2*g3^5) + (2*t^5.67)/g3^3 + (2*g2*t^5.67)/(g1*g3) + t^5.83/(g1^2*g2*g3^5) + g1^2*g2*g3^2*t^5.83 - 3*t^6. + (g1*t^6.)/(g2*g3^2) + (g2*g3^2*t^6.)/g1 + (g1*t^6.11)/(g2*g3^10) + (g2*t^6.11)/(g1*g3^6) + t^6.17/g1^3 + g1^3*g3^3*t^6.17 + (g1*g3*t^6.33)/g2 + 3*g3^3*t^6.33 + (g2*g3^5*t^6.33)/g1 + t^6.44/g3^5 + t^6.61/(g1*g2^2*g3^9) + g1*g2^2*g3^2*t^6.61 + (g1^3*t^6.67)/g2^3 + (g1^2*g3^2*t^6.67)/g2^2 + (2*g1*g3^4*t^6.67)/g2 + 3*g3^6*t^6.67 + (2*g2*g3^8*t^6.67)/g1 + (g2^2*g3^10*t^6.67)/g1^2 + (g2^3*g3^12*t^6.67)/g1^3 + (2*g2*t^6.78)/g1 + (2*g1*t^6.78)/(g2*g3^4) + t^6.78/g3^2 + t^6.89/g3^10 + (2*t^6.94)/(g1^2*g2*g3^4) + t^6.94/(g1^3*g3^2) + g1^3*g3*t^6.94 + 2*g1^2*g2*g3^3*t^6.94 + (g1^3*t^7.11)/(g2^3*g3^5) + (2*g1^2*t^7.11)/(g2^2*g3^3) + (4*g1*t^7.11)/(g2*g3) + 3*g3*t^7.11 + (4*g2*g3^3*t^7.11)/g1 + (2*g2^2*g3^5*t^7.11)/g1^2 + (g2^3*g3^7*t^7.11)/g1^3 + (g1*t^7.22)/(g2*g3^9) + (g2*t^7.22)/(g1*g3^5) - t^7.28/(g1^2*g2*g3) - g1^2*g2*g3^6*t^7.28 + g1*g2^2*t^7.39 + t^7.39/(g1*g2^2*g3^11) + t^7.39/(g1^3*g3^7) + (g1^3*t^7.39)/g3^4 - (g1*g3^2*t^7.45)/g2 + 2*g3^4*t^7.45 - (g2*g3^6*t^7.45)/g1 + (2*g2^2*t^7.55)/g1^2 + (g1^3*t^7.55)/(g2^3*g3^10) + (2*g1^2*t^7.55)/(g2^2*g3^8) + (g1*t^7.55)/(g2*g3^6) + (5*t^7.55)/g3^4 + (g2*t^7.55)/(g1*g3^2) + (g2^3*g3^2*t^7.55)/g1^3 + t^7.72/(g2^3*g3^10) + (2*t^7.72)/(g1*g2^2*g3^8) + t^7.72/(g1^2*g2*g3^6) + g1^2*g2*g3*t^7.72 + 2*g1*g2^2*g3^3*t^7.72 + g2^3*g3^5*t^7.72 + (g1^2*g3^3*t^7.78)/g2^2 + (g1*g3^5*t^7.78)/g2 + 2*g3^7*t^7.78 + (g2*g3^9*t^7.78)/g1 + (g2^2*g3^11*t^7.78)/g1^2 + (g1^2*t^7.89)/(g2^2*g3^5) + (3*g1*t^7.89)/(g2*g3^3) + (3*t^7.89)/g3 + (3*g2*g3*t^7.89)/g1 + (g2^2*g3^3*t^7.89)/g1^2 + (g1^3*t^8.)/(g2^3*g3^15) + (g1*t^8.)/(g2*g3^11) + t^8./g3^9 + (g2*t^8.)/(g1*g3^7) + (g2^3*t^8.)/(g1^3*g3^3) - t^8.06/(g1*g2^2*g3^5) + (2*t^8.06)/(g1^2*g2*g3^3) + 2*g1^2*g2*g3^4*t^8.06 - g1*g2^2*g3^6*t^8.06 + g2^3*t^8.17 + t^8.17/(g2^3*g3^15) + (2*t^8.17)/(g1^2*g2*g3^11) + (2*g1^2*g2*t^8.17)/g3^4 - (2*g1*t^8.22)/g2 + (g1^2*t^8.22)/(g2^2*g3^2) - (2*g2*g3^4*t^8.22)/g1 + (g2^2*g3^6*t^8.22)/g1^2 + (2*g1^2*t^8.33)/(g2^2*g3^10) + (3*g1*t^8.33)/(g2*g3^8) + (2*t^8.33)/g3^6 + (3*g2*t^8.33)/(g1*g3^4) + (2*g2^2*t^8.33)/(g1^2*g3^2) + (g3^2*t^8.39)/g1^3 + (g1^4*g3^3*t^8.39)/g2 + (g2*g3^4*t^8.39)/g1^4 + g1^3*g3^5*t^8.39 + t^8.5/(g2^3*g3^12) + t^8.5/(g1*g2^2*g3^10) - t^8.5/(g1^2*g2*g3^8) + t^8.5/(g1^3*g3^6) + (g1^3*t^8.5)/g3^3 - (g1^2*g2*t^8.5)/g3 + g1*g2^2*g3*t^8.5 + g2^3*g3^3*t^8.5 + (g1^2*g3*t^8.56)/g2^2 + (g1*g3^3*t^8.56)/g2 + 4*g3^5*t^8.56 + (g2*g3^7*t^8.56)/g1 + (g2^2*g3^9*t^8.56)/g1^2 + (g1^2*t^8.67)/(g2^2*g3^7) - (4*g1*t^8.67)/(g2*g3^5) + (4*t^8.67)/g3^3 - (4*g2*t^8.67)/(g1*g3) + (g2^2*g3*t^8.67)/g1^2 + (g1^2*t^8.78)/(g2^2*g3^15) + t^8.78/g3^11 + (g2^2*t^8.78)/(g1^2*g3^7) - g1^3*t^8.83 + (2*t^8.83)/(g1*g2^2*g3^7) + (2*t^8.83)/(g1^2*g2*g3^5) - t^8.83/(g1^3*g3^3) + (g1^4*t^8.83)/(g2*g3^2) + (g2*t^8.83)/(g1^4*g3) + 2*g1^2*g2*g3^2*t^8.83 + 2*g1*g2^2*g3^4*t^8.83 + (g1^4*t^8.89)/g2^4 + (g1^3*g3^2*t^8.89)/g2^3 + (2*g1^2*g3^4*t^8.89)/g2^2 + (3*g1*g3^6*t^8.89)/g2 + 4*g3^8*t^8.89 + (3*g2*g3^10*t^8.89)/g1 + (2*g2^2*g3^12*t^8.89)/g1^2 + (g2^3*g3^14*t^8.89)/g1^3 + (g2^4*g3^16*t^8.89)/g1^4 + t^8.94/(g1*g2^2*g3^15) + (g1*g2^2*t^8.94)/g3^4 - (g3*t^4.11)/y - (g3^2*t^5.22)/y - (g1*g3*t^6.33)/(g2*y) - (g3^3*t^6.33)/y - (g2*g3^5*t^6.33)/(g1*y) - (g2*t^6.78)/(g1*y) - (g1*t^6.78)/(g2*g3^4*y) - (g3^4*t^7.45)/y - t^7.55/(g3^4*y) + (g1^2*t^7.89)/(g2^2*g3^5*y) + (g1*t^7.89)/(g2*g3^3*y) + (3*t^7.89)/(g3*y) + (g2*g3*t^7.89)/(g1*y) + (g2^2*g3^3*t^7.89)/(g1^2*y) + (g1*t^8.22)/(g2*y) - (g3^2*t^8.22)/y + (g2*g3^4*t^8.22)/(g1*y) + t^8.33/(g3^6*y) - (g1^2*g3*t^8.56)/(g2^2*y) - (2*g3^5*t^8.56)/y - (g2^2*g3^9*t^8.56)/(g1^2*y) + (2*g1*t^8.67)/(g2*g3^5*y) + (2*g2*t^8.67)/(g1*g3*y) - g3*t^4.11*y - g3^2*t^5.22*y - (g1*g3*t^6.33*y)/g2 - g3^3*t^6.33*y - (g2*g3^5*t^6.33*y)/g1 - (g2*t^6.78*y)/g1 - (g1*t^6.78*y)/(g2*g3^4) - g3^4*t^7.45*y - (t^7.55*y)/g3^4 + (g1^2*t^7.89*y)/(g2^2*g3^5) + (g1*t^7.89*y)/(g2*g3^3) + (3*t^7.89*y)/g3 + (g2*g3*t^7.89*y)/g1 + (g2^2*g3^3*t^7.89*y)/g1^2 + (g1*t^8.22*y)/g2 - g3^2*t^8.22*y + (g2*g3^4*t^8.22*y)/g1 + (t^8.33*y)/g3^6 - (g1^2*g3*t^8.56*y)/g2^2 - 2*g3^5*t^8.56*y - (g2^2*g3^9*t^8.56*y)/g1^2 + (2*g1*t^8.67*y)/(g2*g3^5) + (2*g2*t^8.67*y)/(g1*g3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61051 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.3719 | 1.6087 | 0.8528 | [X:[1.3579], M:[1.0, 0.7426, 0.6889], q:[0.3021, 0.5596], qb:[0.34, 0.6511], phi:[0.3579]] | t^2.07 + t^2.15 + t^2.23 + t^2.7 + t^2.86 + t^3. + t^3.22 + t^3.63 + 2*t^4.07 + t^4.13 + t^4.21 + 2*t^4.29 + t^4.38 + t^4.46 + t^4.57 + t^4.71 + t^4.77 + 2*t^4.85 + 2*t^4.93 + 2*t^5.01 + t^5.07 + t^5.09 + t^5.15 + t^5.29 + t^5.34 + t^5.37 + t^5.4 + t^5.45 + t^5.56 + t^5.64 + 2*t^5.7 + t^5.72 + 2*t^5.78 + 2*t^5.86 + t^5.92 + t^5.94 - 2*t^6. - t^4.07/y - t^5.15/y - t^4.07*y - t^5.15*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57638 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5367 | 1.8086 | 0.8497 | [X:[], M:[0.6727, 0.674, 0.674], q:[0.4951, 0.4938], qb:[0.4951, 0.4938], phi:[0.337]] | 4*t^2.02 + t^2.96 + 3*t^2.97 + t^3.03 + t^3.97 + 10*t^4.04 + 7*t^4.98 + 13*t^4.99 + t^5.05 + 3*t^5.06 + 4*t^5.46 + 7*t^5.93 + 3*t^5.94 + t^5.99 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |