Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60487 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.4151 | 1.6004 | 0.8842 | [X:[1.3759], M:[0.7801], q:[0.6241, 0.5319], qb:[0.3759, 0.5958], phi:[0.312]] | [X:[[4]], M:[[-5]], q:[[-4], [3]], qb:[[4], [9]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}$ | -1 | t^2.34 + t^2.72 + t^2.81 + t^3. + t^3.38 + t^3.66 + t^3.94 + t^4.13 + t^4.32 + 2*t^4.6 + t^4.68 + t^4.87 + t^4.98 + t^5.06 + t^5.15 + t^5.26 + t^5.45 + 2*t^5.53 + t^5.62 + t^5.64 + t^5.72 + t^5.81 + t^5.92 - t^6. + t^6.11 + 2*t^6.19 + 2*t^6.38 + 2*t^6.47 + t^6.57 + t^6.66 + t^6.74 + t^6.77 + 2*t^6.85 + 2*t^6.94 + t^7.02 + t^7.04 + 2*t^7.13 + 4*t^7.32 + 3*t^7.4 + t^7.49 + 2*t^7.51 + 3*t^7.6 + 2*t^7.7 + 2*t^7.79 + 3*t^7.87 + t^7.96 + 4*t^7.98 + t^8.06 + 2*t^8.17 + 5*t^8.26 - t^8.34 + 2*t^8.36 + 2*t^8.43 + 2*t^8.45 + 4*t^8.53 + 4*t^8.64 - t^8.72 + 2*t^8.81 + t^8.83 - t^8.89 + 6*t^8.92 + t^8.81/y^2 - t^3.94/y - t^4.87/y - t^6.28/y - t^6.66/y - t^6.74/y - t^6.94/y - t^7.21/y - t^7.32/y - t^7.6/y - t^7.68/y - t^7.87/y + t^8.06/y + t^8.15/y - t^8.26/y + t^8.34/y - t^8.62/y + (2*t^8.72)/y - t^3.94*y - t^4.87*y - t^6.28*y - t^6.66*y - t^6.74*y - t^6.94*y - t^7.21*y - t^7.32*y - t^7.6*y - t^7.68*y - t^7.87*y + t^8.06*y + t^8.15*y - t^8.26*y + t^8.34*y - t^8.62*y + 2*t^8.72*y + t^8.81*y^2 | t^2.34/g1^5 + g1^7*t^2.72 + t^2.81/g1^6 + t^3. + g1^12*t^3.38 + g1^5*t^3.66 + t^3.94/g1^2 + g1^4*t^4.13 + g1^10*t^4.32 + 2*g1^3*t^4.6 + t^4.68/g1^10 + t^4.87/g1^4 + g1^15*t^4.98 + g1^2*t^5.06 + t^5.15/g1^11 + g1^8*t^5.26 + g1^14*t^5.45 + 2*g1*t^5.53 + t^5.62/g1^12 + g1^20*t^5.64 + g1^7*t^5.72 + t^5.81/g1^6 + g1^13*t^5.92 - t^6. + g1^19*t^6.11 + 2*g1^6*t^6.19 + 2*g1^12*t^6.38 + (2*t^6.47)/g1 + g1^18*t^6.57 + g1^5*t^6.66 + t^6.74/g1^8 + g1^24*t^6.77 + 2*g1^11*t^6.85 + (2*t^6.94)/g1^2 + t^7.02/g1^15 + g1^17*t^7.04 + 2*g1^4*t^7.13 + 4*g1^10*t^7.32 + (3*t^7.4)/g1^3 + t^7.49/g1^16 + 2*g1^16*t^7.51 + 3*g1^3*t^7.6 + 2*g1^22*t^7.7 + 2*g1^9*t^7.79 + (3*t^7.87)/g1^4 + t^7.96/g1^17 + 4*g1^15*t^7.98 + g1^2*t^8.06 + 2*g1^21*t^8.17 + 5*g1^8*t^8.26 - t^8.34/g1^5 + 2*g1^27*t^8.36 + (2*t^8.43)/g1^18 + 2*g1^14*t^8.45 + 4*g1*t^8.53 + 4*g1^20*t^8.64 - g1^7*t^8.72 + (2*t^8.81)/g1^6 + g1^26*t^8.83 - t^8.89/g1^19 + 6*g1^13*t^8.92 + t^8.81/(g1^6*y^2) - t^3.94/(g1^2*y) - t^4.87/(g1^4*y) - t^6.28/(g1^7*y) - (g1^5*t^6.66)/y - t^6.74/(g1^8*y) - t^6.94/(g1^2*y) - t^7.21/(g1^9*y) - (g1^10*t^7.32)/y - (g1^3*t^7.6)/y - t^7.68/(g1^10*y) - t^7.87/(g1^4*y) + (g1^2*t^8.06)/y + t^8.15/(g1^11*y) - (g1^8*t^8.26)/y + t^8.34/(g1^5*y) - t^8.62/(g1^12*y) + (2*g1^7*t^8.72)/y - (t^3.94*y)/g1^2 - (t^4.87*y)/g1^4 - (t^6.28*y)/g1^7 - g1^5*t^6.66*y - (t^6.74*y)/g1^8 - (t^6.94*y)/g1^2 - (t^7.21*y)/g1^9 - g1^10*t^7.32*y - g1^3*t^7.6*y - (t^7.68*y)/g1^10 - (t^7.87*y)/g1^4 + g1^2*t^8.06*y + (t^8.15*y)/g1^11 - g1^8*t^8.26*y + (t^8.34*y)/g1^5 - (t^8.62*y)/g1^12 + 2*g1^7*t^8.72*y + (t^8.81*y^2)/g1^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57413 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4334 | 1.6275 | 0.8807 | [X:[1.3462], M:[0.8172], q:[0.5801, 0.436], qb:[0.4199, 0.6027], phi:[0.3269]] | t^2.452 + t^2.568 + t^2.942 + t^3. + t^3.116 + t^3.548 + t^3.981 + t^4.039 + t^4.097 + 2*t^4.529 + t^4.903 + t^4.961 + t^5.019 + t^5.077 + t^5.135 + t^5.308 + t^5.337 + t^5.394 + 2*t^5.51 + t^5.568 + t^5.684 + t^5.769 + t^5.856 + t^5.884 + t^5.942 - 2*t^6. - t^3.981/y - t^4.961/y - t^3.981*y - t^4.961*y | detail |