Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60475 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4801 | 1.7567 | 0.8426 | [X:[], M:[0.8585, 0.761, 0.761], q:[0.3805, 0.4779], qb:[0.3805, 0.4779], phi:[0.3805]] | [X:[], M:[[3, 0, 3], [-7, -1, 1], [3, 1, -5]], q:[[-2, -1, -2], [8, 0, 0]], qb:[[0, 1, 0], [0, 0, 8]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1 | 4*t^2.28 + 3*t^2.58 + t^2.87 + t^3.42 + t^4.01 + 11*t^4.57 + 16*t^4.86 + 13*t^5.15 + 3*t^5.44 + 2*t^5.71 + t^5.74 + t^6. + 5*t^6.29 + 3*t^6.58 + 25*t^6.85 + t^6.88 + 45*t^7.14 + 55*t^7.43 + 36*t^7.73 - t^7.99 + 14*t^8.02 - 7*t^8.28 + 3*t^8.31 + t^8.58 + t^8.6 + 10*t^8.87 - t^4.14/y - t^5.28/y - (4*t^6.42)/y - (3*t^6.72)/y - t^7.01/y + (2*t^7.57)/y + (12*t^7.86)/y + (6*t^8.15)/y + (3*t^8.44)/y - (7*t^8.71)/y - t^4.14*y - t^5.28*y - 4*t^6.42*y - 3*t^6.72*y - t^7.01*y + 2*t^7.57*y + 12*t^7.86*y + 6*t^8.15*y + 3*t^8.44*y - 7*t^8.71*y | (g1^3*g2*t^2.28)/g3^5 + (2*t^2.28)/(g1^2*g3^2) + (g3*t^2.28)/(g1^7*g2) + g1^8*g2*t^2.58 + g1^3*g3^3*t^2.58 + (g3^6*t^2.58)/(g1^2*g2) + g1^8*g3^8*t^2.87 + t^3.42/(g1^3*g3^3) + g1^7*g3^7*t^4.01 + (g1^6*g2^2*t^4.57)/g3^10 + (2*g1*g2*t^4.57)/g3^7 + (5*t^4.57)/(g1^4*g3^4) + (2*t^4.57)/(g1^9*g2*g3) + (g3^2*t^4.57)/(g1^14*g2^2) + (g1^3*t^4.86)/(g2^2*g3^5) + (g1^11*g2^2*t^4.86)/g3^5 + (4*g1^6*g2*t^4.86)/g3^2 + 4*g1*g3*t^4.86 + (4*g3^4*t^4.86)/(g1^4*g2) + (g3^7*t^4.86)/(g1^9*g2^2) + (g2^2*g3^7*t^4.86)/g1 + g1^16*g2^2*t^5.15 + (g1^13*t^5.15)/(g2*g3^3) + 2*g1^11*g2*g3^3*t^5.15 + 5*g1^6*g3^6*t^5.15 + (2*g1*g3^9*t^5.15)/g2 + (g3^12*t^5.15)/(g1^4*g2^2) + (g2*g3^15*t^5.15)/g1 + g1^16*g2*g3^8*t^5.44 + g1^11*g3^11*t^5.44 + (g1^6*g3^14*t^5.44)/g2 + (2*t^5.71)/(g1^5*g3^5) + g1^16*g3^16*t^5.74 - 3*t^6. + (g1^2*t^6.)/(g2^2*g3^6) + (g1^5*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^5*g2) + (g2^2*g3^6*t^6.)/g1^2 + (g1^12*t^6.29)/(g2*g3^4) + 3*g1^5*g3^5*t^6.29 + (g2*g3^14*t^6.29)/g1^2 + g1^15*g2*g3^7*t^6.58 + g1^10*g3^10*t^6.58 + (g1^5*g3^13*t^6.58)/g2 + (2*t^6.85)/(g1^16*g2^2) + (g1^9*g2^3*t^6.85)/g3^15 + (2*g1^4*g2^2*t^6.85)/g3^12 + t^6.85/(g1^9*g2^3*g3^9) + (4*g2*t^6.85)/(g1*g3^9) + (9*t^6.85)/(g1^6*g3^6) + (4*t^6.85)/(g1^11*g2*g3^3) + (g2^3*t^6.85)/(g1^3*g3^3) + (g3^3*t^6.85)/(g1^21*g2^3) + g1^15*g3^15*t^6.88 + (g1^14*g2^3*t^7.14)/g3^10 + (3*g1*t^7.14)/(g2^2*g3^7) + (4*g1^9*g2^2*t^7.14)/g3^7 + t^7.14/(g1^4*g2^3*g3^4) + (10*g1^4*g2*t^7.14)/g3^4 + (7*t^7.14)/(g1*g3) + (10*g3^2*t^7.14)/(g1^6*g2) + g1^2*g2^3*g3^2*t^7.14 + (4*g3^5*t^7.14)/(g1^11*g2^2) + (3*g2^2*g3^5*t^7.14)/g1^3 + (g3^8*t^7.14)/(g1^16*g2^3) + (g1^16*t^7.43)/g3^8 + (4*g1^11*t^7.43)/(g2*g3^5) + (g1^19*g2^3*t^7.43)/g3^5 + (g1^6*t^7.43)/(g2^2*g3^2) + (5*g1^14*g2^2*t^7.43)/g3^2 + (g1*g3*t^7.43)/g2^3 + 7*g1^9*g2*g3*t^7.43 + 15*g1^4*g3^4*t^7.43 + (7*g3^7*t^7.43)/(g1*g2) + g1^7*g2^3*g3^7*t^7.43 + (5*g3^10*t^7.43)/(g1^6*g2^2) + g1^2*g2^2*g3^10*t^7.43 + (g3^13*t^7.43)/(g1^11*g2^3) + (4*g2*g3^13*t^7.43)/g1^3 + (g3^16*t^7.43)/g1^8 + (g1^16*t^7.73)/g2 + g1^24*g2^3*t^7.73 + (2*g1^21*t^7.73)/g3^3 + (2*g1^11*g3^3*t^7.73)/g2^2 + 2*g1^19*g2^2*g3^3*t^7.73 + 7*g1^14*g2*g3^6*t^7.73 + 6*g1^9*g3^9*t^7.73 + (7*g1^4*g3^12*t^7.73)/g2 + (2*g3^15*t^7.73)/(g1*g2^2) + 2*g1^7*g2^2*g3^15*t^7.73 + (g3^18*t^7.73)/(g1^6*g2^3) + g1^2*g2*g3^18*t^7.73 + (2*g3^21*t^7.73)/g1^3 - t^7.99/(g1^5*g2^2*g3^13) - (g2*t^7.99)/(g1^2*g3^10) + (3*t^7.99)/(g1^7*g3^7) - t^7.99/(g1^12*g2*g3^4) - (g2^2*t^7.99)/(g1^9*g3) + (g1^21*g3^5*t^8.02)/g2 + g1^24*g2^2*g3^8*t^8.02 + 2*g1^19*g2*g3^11*t^8.02 + 6*g1^14*g3^14*t^8.02 + (2*g1^9*g3^17*t^8.02)/g2 + (g1^4*g3^20*t^8.02)/g2^2 + g1^7*g2*g3^23*t^8.02 - (g1^5*t^8.28)/(g2*g3^11) + (3*t^8.28)/(g2^2*g3^8) - (g1^3*g2*t^8.28)/g3^5 - (9*t^8.28)/(g1^2*g3^2) - (g3*t^8.28)/(g1^7*g2) + (3*g2^2*g3^4*t^8.28)/g1^4 - (g2*g3^7*t^8.28)/g1^9 + g1^24*g2*g3^16*t^8.31 + g1^19*g3^19*t^8.31 + (g1^14*g3^22*t^8.31)/g2 + t^8.58/g2^3 - 5*g1^8*g2*t^8.58 + (3*g1^10*t^8.58)/(g2*g3^6) - (g1^5*t^8.58)/(g2^2*g3^3) + (g1^13*g2^2*t^8.58)/g3^3 + 3*g1^3*g3^3*t^8.58 - (5*g3^6*t^8.58)/(g1^2*g2) + g1^6*g2^3*g3^6*t^8.58 + (g3^9*t^8.58)/(g1^7*g2^2) - g1*g2^2*g3^9*t^8.58 + (3*g2*g3^12*t^8.58)/g1^4 + g1^24*g3^24*t^8.6 + (g1^20*t^8.87)/g3^4 - (g1^15*t^8.87)/(g2*g3) + (2*g1^10*g3^2*t^8.87)/g2^2 + 4*g1^13*g2*g3^5*t^8.87 - 2*g1^8*g3^8*t^8.87 + (4*g1^3*g3^11*t^8.87)/g2 + 2*g1^6*g2^2*g3^14*t^8.87 - g1*g2*g3^17*t^8.87 + (g3^20*t^8.87)/g1^4 - t^4.14/(g1*g3*y) - t^5.28/(g1^2*g3^2*y) - t^6.42/(g1^8*g2*y) - (g1^2*g2*t^6.42)/(g3^6*y) - (2*t^6.42)/(g1^3*g3^3*y) - (g1^7*g2*t^6.72)/(g3*y) - (g1^2*g3^2*t^6.72)/y - (g3^5*t^6.72)/(g1^3*g2*y) - (g1^7*g3^7*t^7.01)/y + (g1*g2*t^7.57)/(g3^7*y) + t^7.57/(g1^9*g2*g3*y) + (g1^11*g2^2*t^7.86)/(g3^5*y) + (3*g1^6*g2*t^7.86)/(g3^2*y) + (4*g1*g3*t^7.86)/y + (3*g3^4*t^7.86)/(g1^4*g2*y) + (g3^7*t^7.86)/(g1^9*g2^2*y) + (2*g1^11*g2*g3^3*t^8.15)/y + (2*g1^6*g3^6*t^8.15)/y + (2*g1*g3^9*t^8.15)/(g2*y) + (g1^16*g2*g3^8*t^8.44)/y + (g1^11*g3^11*t^8.44)/y + (g1^6*g3^14*t^8.44)/(g2*y) - (g1^5*g2^2*t^8.71)/(g3^11*y) - (g2*t^8.71)/(g3^8*y) - (3*t^8.71)/(g1^5*g3^5*y) - t^8.71/(g1^10*g2*g3^2*y) - (g3*t^8.71)/(g1^15*g2^2*y) - (t^4.14*y)/(g1*g3) - (t^5.28*y)/(g1^2*g3^2) - (t^6.42*y)/(g1^8*g2) - (g1^2*g2*t^6.42*y)/g3^6 - (2*t^6.42*y)/(g1^3*g3^3) - (g1^7*g2*t^6.72*y)/g3 - g1^2*g3^2*t^6.72*y - (g3^5*t^6.72*y)/(g1^3*g2) - g1^7*g3^7*t^7.01*y + (g1*g2*t^7.57*y)/g3^7 + (t^7.57*y)/(g1^9*g2*g3) + (g1^11*g2^2*t^7.86*y)/g3^5 + (3*g1^6*g2*t^7.86*y)/g3^2 + 4*g1*g3*t^7.86*y + (3*g3^4*t^7.86*y)/(g1^4*g2) + (g3^7*t^7.86*y)/(g1^9*g2^2) + 2*g1^11*g2*g3^3*t^8.15*y + 2*g1^6*g3^6*t^8.15*y + (2*g1*g3^9*t^8.15*y)/g2 + g1^16*g2*g3^8*t^8.44*y + g1^11*g3^11*t^8.44*y + (g1^6*g3^14*t^8.44*y)/g2 - (g1^5*g2^2*t^8.71*y)/g3^11 - (g2*t^8.71*y)/g3^8 - (3*t^8.71*y)/(g1^5*g3^5) - (t^8.71*y)/(g1^10*g2*g3^2) - (g3*t^8.71*y)/(g1^15*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57638 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.5367 | 1.8086 | 0.8497 | [X:[], M:[0.6727, 0.674, 0.674], q:[0.4951, 0.4938], qb:[0.4951, 0.4938], phi:[0.337]] | 4*t^2.02 + t^2.96 + 3*t^2.97 + t^3.03 + t^3.97 + 10*t^4.04 + 7*t^4.98 + 13*t^4.99 + t^5.05 + 3*t^5.06 + 4*t^5.46 + 7*t^5.93 + 3*t^5.94 + t^5.99 - t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |