Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6041 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{4}M_{8}$ + ${ }M_{9}\phi_{1}q_{2}^{2}$ | 0.7277 | 0.9165 | 0.794 | [M:[1.083, 0.8755, 0.917, 1.0415, 1.0, 0.9585, 0.917, 0.9585, 0.6763], q:[0.5, 0.417], qb:[0.583, 0.5415], phi:[0.4896]] | [M:[[8], [-12], [-8], [4], [0], [-4], [-8], [-4], [17]], q:[[0], [-8]], qb:[[8], [4]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{7}$, ${ }M_{6}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{9}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{6}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{9}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}M_{9}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}M_{7}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{3}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{6}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}^{4}$, ${ }M_{5}\phi_{1}^{2}$ | ${}$ | -3 | t^2.029 + t^2.627 + 2*t^2.751 + 2*t^2.876 + t^2.938 + t^3. + t^4.058 + t^4.22 + t^4.344 + 2*t^4.469 + t^4.593 + t^4.656 + 2*t^4.718 + 2*t^4.78 + t^4.842 + 2*t^4.905 + 2*t^4.967 + t^5.029 + t^5.253 + 2*t^5.378 + 4*t^5.502 + t^5.564 + 4*t^5.627 + 2*t^5.689 + 3*t^5.751 + 2*t^5.813 + t^5.876 + t^5.938 - 3*t^6. + t^6.087 - 3*t^6.124 - t^6.249 + t^6.498 + t^6.622 + t^6.685 + 2*t^6.747 + 2*t^6.809 + t^6.846 + t^6.871 + 2*t^6.934 + 2*t^6.971 + 2*t^6.996 - t^7.033 + t^7.058 + 4*t^7.095 + t^7.158 + 5*t^7.22 + t^7.282 + 5*t^7.344 + 3*t^7.407 + 4*t^7.469 + 3*t^7.531 + 4*t^7.593 + 5*t^7.656 + 4*t^7.718 + 2*t^7.78 + 2*t^7.842 + t^7.88 + t^7.905 + 2*t^8.004 - 4*t^8.029 - t^8.091 + t^8.116 + 4*t^8.129 - 3*t^8.154 + t^8.191 + 6*t^8.253 - t^8.278 + 2*t^8.315 + 5*t^8.378 + 4*t^8.44 + 4*t^8.502 + t^8.527 + 4*t^8.564 + t^8.651 + 4*t^8.689 + t^8.714 - 7*t^8.751 + 2*t^8.776 + 2*t^8.813 + 2*t^8.838 - 11*t^8.876 + t^8.9 + 2*t^8.963 - t^4.469/y - t^6.498/y - t^7.095/y - t^7.22/y - t^7.344/y - t^7.407/y + t^7.531/y + t^7.593/y + t^7.656/y + t^7.718/y + (2*t^7.78)/y + t^7.842/y + (2*t^7.905)/y + t^7.967/y + t^8.029/y + (2*t^8.378)/y + t^8.44/y + (3*t^8.502)/y - t^8.527/y + t^8.564/y + (5*t^8.627)/y + (2*t^8.689)/y + (3*t^8.751)/y + (2*t^8.813)/y + (2*t^8.876)/y + t^8.938/y - t^4.469*y - t^6.498*y - t^7.095*y - t^7.22*y - t^7.344*y - t^7.407*y + t^7.531*y + t^7.593*y + t^7.656*y + t^7.718*y + 2*t^7.78*y + t^7.842*y + 2*t^7.905*y + t^7.967*y + t^8.029*y + 2*t^8.378*y + t^8.44*y + 3*t^8.502*y - t^8.527*y + t^8.564*y + 5*t^8.627*y + 2*t^8.689*y + 3*t^8.751*y + 2*t^8.813*y + 2*t^8.876*y + t^8.938*y | g1^17*t^2.029 + t^2.627/g1^12 + (2*t^2.751)/g1^8 + (2*t^2.876)/g1^4 + t^2.938/g1^2 + t^3. + g1^34*t^4.058 + t^4.22/g1^9 + t^4.344/g1^5 + (2*t^4.469)/g1 + g1^3*t^4.593 + g1^5*t^4.656 + 2*g1^7*t^4.718 + 2*g1^9*t^4.78 + g1^11*t^4.842 + 2*g1^13*t^4.905 + 2*g1^15*t^4.967 + g1^17*t^5.029 + t^5.253/g1^24 + (2*t^5.378)/g1^20 + (4*t^5.502)/g1^16 + t^5.564/g1^14 + (4*t^5.627)/g1^12 + (2*t^5.689)/g1^10 + (3*t^5.751)/g1^8 + (2*t^5.813)/g1^6 + t^5.876/g1^4 + t^5.938/g1^2 - 3*t^6. + g1^51*t^6.087 - 3*g1^4*t^6.124 - g1^8*t^6.249 + g1^16*t^6.498 + g1^20*t^6.622 + g1^22*t^6.685 + 2*g1^24*t^6.747 + 2*g1^26*t^6.809 + t^6.846/g1^21 + g1^28*t^6.871 + 2*g1^30*t^6.934 + (2*t^6.971)/g1^17 + 2*g1^32*t^6.996 - t^7.033/g1^15 + g1^34*t^7.058 + (4*t^7.095)/g1^13 + t^7.158/g1^11 + (5*t^7.22)/g1^9 + t^7.282/g1^7 + (5*t^7.344)/g1^5 + (3*t^7.407)/g1^3 + (4*t^7.469)/g1 + 3*g1*t^7.531 + 4*g1^3*t^7.593 + 5*g1^5*t^7.656 + 4*g1^7*t^7.718 + 2*g1^9*t^7.78 + 2*g1^11*t^7.842 + t^7.88/g1^36 + g1^13*t^7.905 + (2*t^8.004)/g1^32 - 4*g1^17*t^8.029 - g1^19*t^8.091 + g1^68*t^8.116 + (4*t^8.129)/g1^28 - 3*g1^21*t^8.154 + t^8.191/g1^26 + (6*t^8.253)/g1^24 - g1^25*t^8.278 + (2*t^8.315)/g1^22 + (5*t^8.378)/g1^20 + (4*t^8.44)/g1^18 + (4*t^8.502)/g1^16 + g1^33*t^8.527 + (4*t^8.564)/g1^14 + g1^37*t^8.651 + (4*t^8.689)/g1^10 + g1^39*t^8.714 - (7*t^8.751)/g1^8 + 2*g1^41*t^8.776 + (2*t^8.813)/g1^6 + 2*g1^43*t^8.838 - (11*t^8.876)/g1^4 + g1^45*t^8.9 + 2*g1^47*t^8.963 - t^4.469/(g1*y) - (g1^16*t^6.498)/y - t^7.095/(g1^13*y) - t^7.22/(g1^9*y) - t^7.344/(g1^5*y) - t^7.407/(g1^3*y) + (g1*t^7.531)/y + (g1^3*t^7.593)/y + (g1^5*t^7.656)/y + (g1^7*t^7.718)/y + (2*g1^9*t^7.78)/y + (g1^11*t^7.842)/y + (2*g1^13*t^7.905)/y + (g1^15*t^7.967)/y + (g1^17*t^8.029)/y + (2*t^8.378)/(g1^20*y) + t^8.44/(g1^18*y) + (3*t^8.502)/(g1^16*y) - (g1^33*t^8.527)/y + t^8.564/(g1^14*y) + (5*t^8.627)/(g1^12*y) + (2*t^8.689)/(g1^10*y) + (3*t^8.751)/(g1^8*y) + (2*t^8.813)/(g1^6*y) + (2*t^8.876)/(g1^4*y) + t^8.938/(g1^2*y) - (t^4.469*y)/g1 - g1^16*t^6.498*y - (t^7.095*y)/g1^13 - (t^7.22*y)/g1^9 - (t^7.344*y)/g1^5 - (t^7.407*y)/g1^3 + g1*t^7.531*y + g1^3*t^7.593*y + g1^5*t^7.656*y + g1^7*t^7.718*y + 2*g1^9*t^7.78*y + g1^11*t^7.842*y + 2*g1^13*t^7.905*y + g1^15*t^7.967*y + g1^17*t^8.029*y + (2*t^8.378*y)/g1^20 + (t^8.44*y)/g1^18 + (3*t^8.502*y)/g1^16 - g1^33*t^8.527*y + (t^8.564*y)/g1^14 + (5*t^8.627*y)/g1^12 + (2*t^8.689*y)/g1^10 + (3*t^8.751*y)/g1^8 + (2*t^8.813*y)/g1^6 + (2*t^8.876*y)/g1^4 + (t^8.938*y)/g1^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4544 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{5}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{7}$ + ${ }M_{4}M_{8}$ | 0.7069 | 0.8759 | 0.8071 | [M:[1.0856, 0.8717, 0.9144, 1.0428, 1.0, 0.9572, 0.9144, 0.9572], q:[0.5, 0.4144], qb:[0.5856, 0.5428], phi:[0.4893]] | t^2.615 + 2*t^2.743 + 2*t^2.872 + t^2.936 + t^3. + t^3.955 + t^4.211 + t^4.34 + 2*t^4.468 + t^4.596 + 2*t^4.725 + t^4.853 + t^4.981 + t^5.23 + 2*t^5.358 + 4*t^5.487 + t^5.551 + 4*t^5.615 + 2*t^5.679 + 3*t^5.743 + 2*t^5.808 + t^5.872 + t^5.936 - 3*t^6. - t^4.468/y - t^4.468*y | detail |