Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
6019 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_2M_3$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_7$ + $ M_8q_1\tilde{q}_2$ + $ M_3M_9$ | 0.7508 | 0.9452 | 0.7943 | [X:[], M:[0.7778, 1.0, 1.0, 0.7778, 1.0, 0.7778, 1.0, 0.7778, 1.0], q:[0.6111, 0.6111], qb:[0.3889, 0.6111], phi:[0.4444]] | [X:[], M:[[1], [-1], [1], [-1], [0], [0], [1], [0], [-1]], q:[[-1], [0]], qb:[[0], [1]], phi:[[0]]] | 1 | {a: 973/1296, c: 1225/1296, M1: 7/9, M2: 1, M3: 1, M4: 7/9, M5: 1, M6: 7/9, M7: 1, M8: 7/9, M9: 1, q1: 11/18, q2: 11/18, qb1: 7/18, qb2: 11/18, phi1: 4/9} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_4$, $ M_6$, $ M_8$, $ M_4$, $ M_1$, $ \phi_1^2$, $ M_5$, $ M_7$, $ M_9$, $ M_9$, $ M_7$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_4$, $ M_4^2$, $ M_1M_6$, $ M_4M_6$, $ M_6^2$, $ M_1M_8$, $ M_4M_8$, $ M_6M_8$, $ M_8^2$, $ M_4^2$, $ M_4M_6$, $ M_4M_8$, $ M_1M_6$, $ M_1M_8$, $ M_1^2$, $ M_1\phi_1^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_8\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1^2$, $ M_4\phi_1^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1M_5$, $ M_4M_5$, $ M_5M_6$, $ M_1M_7$, $ M_4M_7$, $ M_6M_7$, $ M_5M_8$, $ M_7M_8$, $ M_1M_9$, $ M_4M_9$, $ M_6M_9$, $ M_8M_9$, $ \phi_1^4$, $ M_4M_9$, $ M_4M_5$, $ M_6M_9$, $ M_8M_9$, $ M_1M_5$, $ M_6M_7$, $ M_7M_8$, $ M_1M_7$, $ M_5\phi_1^2$, $ M_7\phi_1^2$, $ M_9\phi_1^2$, $ M_9\phi_1^2$, $ M_7\phi_1^2$ | $M_5M_7$, $ M_7^2$, $ M_5M_9$, $ M_7M_9$, $ M_9^2$ | -4 | 4*t^2.33 + t^2.67 + 3*t^3. + 3*t^4.33 + 10*t^4.67 + 10*t^5. + 10*t^5.33 + 3*t^5.67 - 4*t^6. + 5*t^6.67 + 22*t^7. + 31*t^7.33 + 25*t^7.67 + 16*t^8. - 22*t^8.33 - 7*t^8.67 - t^4.33/y - (4*t^6.67)/y - t^7./y + (7*t^7.67)/y + (8*t^8.)/y + (12*t^8.33)/y + (3*t^8.67)/y - t^4.33*y - 4*t^6.67*y - t^7.*y + 7*t^7.67*y + 8*t^8.*y + 12*t^8.33*y + 3*t^8.67*y | 2*t^2.33 + t^2.33/g1 + g1*t^2.33 + t^2.67 + t^3. + t^3./g1 + g1*t^3. + t^4.33 + t^4.33/g1 + g1*t^4.33 + 4*t^4.67 + t^4.67/g1^2 + (2*t^4.67)/g1 + 2*g1*t^4.67 + g1^2*t^4.67 + 4*t^5. + t^5./g1^2 + (2*t^5.)/g1 + 2*g1*t^5. + g1^2*t^5. + 4*t^5.33 + t^5.33/g1^2 + (2*t^5.33)/g1 + 2*g1*t^5.33 + g1^2*t^5.33 + t^5.67 + t^5.67/g1 + g1*t^5.67 - 2*t^6. - t^6./g1 - g1*t^6. + t^6.67 + t^6.67/g1^2 + t^6.67/g1 + g1*t^6.67 + g1^2*t^6.67 + 6*t^7. + t^7./g1^3 + (2*t^7.)/g1^2 + (5*t^7.)/g1 + 5*g1*t^7. + 2*g1^2*t^7. + g1^3*t^7. + 9*t^7.33 + t^7.33/g1^3 + (4*t^7.33)/g1^2 + (6*t^7.33)/g1 + 6*g1*t^7.33 + 4*g1^2*t^7.33 + g1^3*t^7.33 + 7*t^7.67 + t^7.67/g1^3 + (3*t^7.67)/g1^2 + (5*t^7.67)/g1 + 5*g1*t^7.67 + 3*g1^2*t^7.67 + g1^3*t^7.67 + 4*t^8. + t^8./g1^3 + (2*t^8.)/g1^2 + (3*t^8.)/g1 + 3*g1*t^8. + 2*g1^2*t^8. + g1^3*t^8. - 8*t^8.33 - (2*t^8.33)/g1^2 - (5*t^8.33)/g1 - 5*g1*t^8.33 - 2*g1^2*t^8.33 - 3*t^8.67 - (2*t^8.67)/g1 - 2*g1*t^8.67 - t^4.33/y - (2*t^6.67)/y - t^6.67/(g1*y) - (g1*t^6.67)/y - t^7./y + (3*t^7.67)/y + (2*t^7.67)/(g1*y) + (2*g1*t^7.67)/y + (4*t^8.)/y + (2*t^8.)/(g1*y) + (2*g1*t^8.)/y + (4*t^8.33)/y + t^8.33/(g1^2*y) + (3*t^8.33)/(g1*y) + (3*g1*t^8.33)/y + (g1^2*t^8.33)/y + t^8.67/y + t^8.67/(g1*y) + (g1*t^8.67)/y - t^4.33*y - 2*t^6.67*y - (t^6.67*y)/g1 - g1*t^6.67*y - t^7.*y + 3*t^7.67*y + (2*t^7.67*y)/g1 + 2*g1*t^7.67*y + 4*t^8.*y + (2*t^8.*y)/g1 + 2*g1*t^8.*y + 4*t^8.33*y + (t^8.33*y)/g1^2 + (3*t^8.33*y)/g1 + 3*g1*t^8.33*y + g1^2*t^8.33*y + t^8.67*y + (t^8.67*y)/g1 + g1*t^8.67*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4506 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_2\tilde{q}_1$ + $ M_5^2$ + $ M_2M_3$ + $ M_6\phi_1\tilde{q}_1^2$ + $ M_6q_1\tilde{q}_2$ + $ M_2M_7$ + $ M_8q_1\tilde{q}_2$ | 0.7521 | 0.9482 | 0.7931 | [X:[], M:[0.7502, 1.0276, 0.9724, 0.8054, 1.0, 0.7778, 0.9724, 0.7778], q:[0.6387, 0.6111], qb:[0.3889, 0.5835], phi:[0.4444]] | t^2.25 + 2*t^2.33 + t^2.42 + t^2.67 + 2*t^2.92 + t^3. + t^4.25 + t^4.33 + t^4.42 + t^4.5 + 2*t^4.58 + 4*t^4.67 + 2*t^4.75 + 2*t^4.83 + 2*t^4.92 + 4*t^5. + 2*t^5.08 + 3*t^5.17 + 4*t^5.25 + 4*t^5.33 + 2*t^5.58 + t^5.67 + 2*t^5.83 - 3*t^6. - t^4.33/y - t^4.33*y | detail |