Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60158 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.4154 | 1.6063 | 0.8812 | [X:[1.3969], M:[0.7549, 1.0542, 0.7549], q:[0.4095, 0.711], qb:[0.5341, 0.5362], phi:[0.3015]] | [X:[[0, 0, 4]], M:[[-1, 1, -5], [1, -1, -7], [-1, 1, -5]], q:[[-1, -1, 7], [-1, -1, 5]], qb:[[2, 0, 0], [0, 2, 0]], phi:[[0, 0, -2]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$ | ${}$ | -5 | 2*t^2.26 + t^2.71 + t^2.83 + t^3.16 + 2*t^3.74 + t^4.19 + 3*t^4.53 + 2*t^4.64 + 2*t^4.65 + 2*t^4.98 + t^5.1 + 3*t^5.43 + t^5.49 + 2*t^5.54 + t^5.55 + t^5.66 + 2*t^5.72 + t^5.88 - 5*t^6. + 3*t^6.01 + t^6.33 + 3*t^6.4 + 4*t^6.46 + 2*t^6.57 + t^6.62 + t^6.63 + 4*t^6.79 + t^6.9 + 3*t^6.91 + t^7.02 - t^7.08 + 3*t^7.24 + 2*t^7.3 + 3*t^7.35 + 3*t^7.36 + 2*t^7.47 + 5*t^7.48 + t^7.52 + 2*t^7.53 + t^7.54 + 5*t^7.69 - 2*t^7.75 + t^7.8 + 2*t^7.81 + t^7.82 + t^7.93 - 2*t^7.98 + t^7.99 + 3*t^8.14 + 2*t^8.21 - 6*t^8.26 + 4*t^8.27 + t^8.33 + 7*t^8.38 + 4*t^8.39 + t^8.43 + t^8.44 + t^8.49 + 2*t^8.55 + 3*t^8.59 + t^8.66 - 3*t^8.71 + 6*t^8.72 - 5*t^8.83 + t^8.84 - t^8.88 - t^8.89 + t^8.71/y^2 - t^3.9/y - t^4.81/y - (2*t^6.17)/y - t^6.62/y - t^6.74/y - (3*t^7.07)/y - t^7.52/y + t^7.53/y - t^7.65/y - t^7.97/y + (2*t^7.98)/y + (2*t^8.1)/y - t^8.43/y + t^8.54/y - (2*t^8.55)/y - t^8.88/y + t^8.99/y - t^3.9*y - t^4.81*y - 2*t^6.17*y - t^6.62*y - t^6.74*y - 3*t^7.07*y - t^7.52*y + t^7.53*y - t^7.65*y - t^7.97*y + 2*t^7.98*y + 2*t^8.1*y - t^8.43*y + t^8.54*y - 2*t^8.55*y - t^8.88*y + t^8.99*y + t^8.71*y^2 | (2*g2*t^2.26)/(g1*g3^5) + t^2.71/g3^6 + (g1*g3^7*t^2.83)/g2 + (g1*t^3.16)/(g2*g3^7) + (2*g2*g3^5*t^3.74)/g1 + g3^4*t^4.19 + (3*g2^2*t^4.53)/(g1^2*g3^10) + (2*g1*g3^3*t^4.64)/g2 + (2*g2*g3^3*t^4.65)/g1 + (2*g2*t^4.98)/(g1*g3^11) + g3^2*t^5.1 + (3*t^5.43)/g3^12 + (g3^17*t^5.49)/(g1^3*g2^3) + (2*g1*g3*t^5.54)/g2 + (g2*g3*t^5.55)/g1 + (g1^2*g3^14*t^5.66)/g2^2 + (g1^4*g2^2*t^5.72)/g3^2 + (g1^2*g2^4*t^5.72)/g3^2 + (g1*t^5.88)/(g2*g3^13) - 5*t^6. + (3*g2^2*t^6.01)/g1^2 + (g1^2*t^6.33)/(g2^2*g3^14) + (3*g3^15*t^6.4)/(g1^3*g2^3) + (4*g2*t^6.46)/(g1*g3) + 2*g3^12*t^6.57 + (g1^4*g2^2*t^6.62)/g3^4 + (g1^2*g2^4*t^6.63)/g3^4 + (4*g2^3*t^6.79)/(g1^3*g3^15) + (2*t^6.9)/g3^2 - (g1^2*t^6.9)/(g2^2*g3^2) + (3*g2^2*t^6.91)/(g1^2*g3^2) + (g1*g3^11*t^7.02)/g2 - (g1^3*g2^3*t^7.08)/g3^5 + (3*g2^2*t^7.24)/(g1^2*g3^16) + (2*g3^13*t^7.3)/(g1^3*g2^3) + (3*g1*t^7.35)/(g2*g3^3) + (3*g2*t^7.36)/(g1*g3^3) + (2*g1^2*g3^10*t^7.47)/g2^2 + 2*g3^10*t^7.48 + (3*g2^2*g3^10*t^7.48)/g1^2 + (g1^6*t^7.52)/g3^6 + (g1^4*g2^2*t^7.53)/g3^6 + (g1^2*g2^4*t^7.53)/g3^6 + (g2^6*t^7.54)/g3^6 + (5*g2*t^7.69)/(g1*g3^17) - (2*g3^12*t^7.75)/(g1^2*g2^4) + (g1^2*t^7.8)/(g2^2*g3^4) + (2*t^7.81)/g3^4 + (g2^2*t^7.82)/(g1^2*g3^4) + (g2*g3^9*t^7.93)/g1 - (g1^5*g2*t^7.98)/g3^7 - (g1^3*g2^3*t^7.98)/g3^7 + (g1*g2^5*t^7.99)/g3^7 + (3*t^8.14)/g3^18 + (2*g3^11*t^8.21)/(g1^3*g2^3) + (2*g1*t^8.26)/(g2*g3^5) - (8*g2*t^8.26)/(g1*g3^5) + (4*g2^3*t^8.27)/(g1^3*g3^5) + (g3^24*t^8.33)/(g1^2*g2^4) + 5*g3^8*t^8.38 + (2*g1^2*g3^8*t^8.38)/g2^2 + (4*g2^2*g3^8*t^8.39)/g1^2 + (g1^4*g2^2*t^8.43)/g3^8 + (g1^2*g2^4*t^8.44)/g3^8 + (g1^3*g3^21*t^8.49)/g2^3 + g1^5*g2*g3^5*t^8.55 + g1^3*g2^3*g3^5*t^8.55 + (3*g1*t^8.59)/(g2*g3^19) - (2*g3^10*t^8.66)/(g1^2*g2^4) + (3*g3^10*t^8.66)/(g1^4*g2^2) - (4*t^8.71)/g3^6 + (g1^2*t^8.71)/(g2^2*g3^6) + (6*g2^2*t^8.72)/(g1^2*g3^6) - (5*g1*g3^7*t^8.83)/g2 + (g2*g3^7*t^8.84)/g1 - (g1^5*g2*t^8.88)/g3^9 - (g1^3*g2^3*t^8.89)/g3^9 + t^8.71/(g3^6*y^2) - t^3.9/(g3^2*y) - t^4.81/(g3^4*y) - (2*g2*t^6.17)/(g1*g3^7*y) - t^6.62/(g3^8*y) - (g1*g3^5*t^6.74)/(g2*y) - (g1*t^7.07)/(g2*g3^9*y) - (2*g2*t^7.07)/(g1*g3^9*y) - t^7.52/(g3^10*y) + (g2^2*t^7.53)/(g1^2*g3^10*y) - (g2*g3^3*t^7.65)/(g1*y) - (g1*t^7.97)/(g2*g3^11*y) + (2*g2*t^7.98)/(g1*g3^11*y) + (2*g3^2*t^8.1)/y + (2*t^8.43)/(g3^12*y) - (3*g2^2*t^8.43)/(g1^2*g3^12*y) + (g1*g3*t^8.54)/(g2*y) - (2*g2*g3*t^8.55)/(g1*y) + (g1*t^8.88)/(g2*g3^13*y) - (2*g2*t^8.88)/(g1*g3^13*y) + (g1^2*t^8.99)/(g2^2*y) - (t^3.9*y)/g3^2 - (t^4.81*y)/g3^4 - (2*g2*t^6.17*y)/(g1*g3^7) - (t^6.62*y)/g3^8 - (g1*g3^5*t^6.74*y)/g2 - (g1*t^7.07*y)/(g2*g3^9) - (2*g2*t^7.07*y)/(g1*g3^9) - (t^7.52*y)/g3^10 + (g2^2*t^7.53*y)/(g1^2*g3^10) - (g2*g3^3*t^7.65*y)/g1 - (g1*t^7.97*y)/(g2*g3^11) + (2*g2*t^7.98*y)/(g1*g3^11) + 2*g3^2*t^8.1*y + (2*t^8.43*y)/g3^12 - (3*g2^2*t^8.43*y)/(g1^2*g3^12) + (g1*g3*t^8.54*y)/g2 - (2*g2*g3*t^8.55*y)/g1 + (g1*t^8.88*y)/(g2*g3^13) - (2*g2*t^8.88*y)/(g1*g3^13) + (g1^2*t^8.99*y)/g2^2 + (t^8.71*y^2)/g3^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57497 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.3969 | 1.5736 | 0.8877 | [X:[1.3909], M:[0.7701, 1.0571], q:[0.4036, 0.7081], qb:[0.5218, 0.5394], phi:[0.3045]] | t^2.31 + t^2.74 + t^2.78 + t^3.17 + t^3.69 + 2*t^3.74 + t^4.17 + 2*t^4.6 + t^4.62 + 2*t^4.66 + t^5.05 + t^5.46 + 2*t^5.48 + 2*t^5.52 + t^5.55 + t^5.57 + t^5.66 + t^5.72 + t^5.91 - 4*t^6. - t^3.91/y - t^4.83/y - t^3.91*y - t^4.83*y | detail |