Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60156 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{1}M_{2}$ | 1.4532 | 1.6414 | 0.8853 | [X:[1.3314], M:[0.9971, 1.0029], q:[0.4971, 0.5], qb:[0.5029, 0.4941], phi:[0.3343]] | [X:[[0, 2]], M:[[0, 3], [0, -3]], q:[[-1, 9], [-1, 6]], qb:[[1, -9], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | t^2.97 + t^2.98 + t^3. + 2*t^3.01 + t^3.98 + 2*t^3.99 + t^4. + t^4.01 + t^4.98 + t^4.99 + 2*t^5.01 + t^5.48 + 2*t^5.49 + t^5.5 + t^5.95 + 2*t^5.96 + 3*t^5.98 + t^5.99 - 3*t^6. + t^6.01 + 3*t^6.02 - t^6.03 + t^6.48 + t^6.49 + t^6.5 + t^6.51 + t^6.95 + 2*t^6.96 + 2*t^6.97 + 2*t^6.98 + 8*t^6.99 + 2*t^7.01 + 2*t^7.02 - t^7.03 + t^7.46 + t^7.48 + t^7.51 + t^7.54 + 2*t^7.95 + 3*t^7.96 + 2*t^7.97 + 2*t^7.98 + 7*t^7.99 + 3*t^8. + 3*t^8.01 + 3*t^8.02 - t^8.03 + t^8.45 + 2*t^8.46 + t^8.47 + t^8.48 + 2*t^8.49 - 2*t^8.52 - t^8.53 + t^8.92 + t^8.93 + t^8.94 + t^8.95 + 7*t^8.96 - 2*t^8.97 - 2*t^8.98 + 7*t^8.99 - t^4./y - t^5.01/y - t^6.98/y - t^6.99/y - t^7./y - (2*t^7.01)/y - t^7.98/y - t^7.99/y - (3*t^8.01)/y + t^8.96/y + t^8.97/y + (2*t^8.98)/y + t^8.99/y - t^4.*y - t^5.01*y - t^6.98*y - t^6.99*y - t^7.*y - 2*t^7.01*y - t^7.98*y - t^7.99*y - 3*t^8.01*y + t^8.96*y + t^8.97*y + 2*t^8.98*y + t^8.99*y | g2^9*t^2.97 + g2^6*t^2.98 + t^3. + (2*t^3.01)/g2^3 + g2^8*t^3.98 + g2^2*t^3.99 + g2^5*t^3.99 + t^4./g2 + t^4.01/g2^4 + g2^7*t^4.98 + g2^4*t^4.99 + t^5.01/g2^5 + t^5.01/g2^2 + (g1^3*t^5.48)/g2^10 + (g2^20*t^5.49)/g1^3 + (g2^23*t^5.49)/g1^3 + (g1^3*t^5.5)/g2^19 + g2^18*t^5.95 + g2^12*t^5.96 + g2^15*t^5.96 + 3*g2^6*t^5.98 + g2^3*t^5.99 - 3*t^6. + t^6.01/g2^3 + (3*t^6.02)/g2^6 - t^6.03/g2^9 + (g1^3*t^6.48)/g2^11 + (g2^22*t^6.49)/g1^3 + (g2^19*t^6.5)/g1^3 + (g1^3*t^6.51)/g2^20 + g2^17*t^6.95 + 2*g2^14*t^6.96 + 2*g2^11*t^6.97 + 2*g2^8*t^6.98 + 3*g2^2*t^6.99 + 5*g2^5*t^6.99 + (2*t^7.01)/g2^4 + (2*t^7.02)/g2^7 - t^7.03/g2^10 + (g1^3*t^7.46)/g2^3 + (g1^3*t^7.48)/g2^12 - (g1^3*t^7.49)/g2^15 + (g2^21*t^7.49)/g1^3 - (g1^3*t^7.5)/g2^18 + (g2^18*t^7.5)/g1^3 + (g1^3*t^7.51)/g2^21 + (g1^3*t^7.54)/g2^30 + 2*g2^16*t^7.95 + 3*g2^13*t^7.96 + 2*g2^10*t^7.97 + 2*g2^7*t^7.98 + 7*g2^4*t^7.99 + 3*g2*t^8. + (3*t^8.01)/g2^5 + (3*t^8.02)/g2^8 - t^8.03/g2^11 + (g1^3*t^8.45)/g2 + (g1^3*t^8.46)/g2^4 + (g2^32*t^8.46)/g1^3 - (g1^3*t^8.47)/g2^7 + (2*g2^29*t^8.47)/g1^3 + (g1^3*t^8.48)/g2^10 - (2*g1^3*t^8.49)/g2^16 + (3*g1^3*t^8.49)/g2^13 + (2*g2^20*t^8.49)/g1^3 - (g2^23*t^8.49)/g1^3 - (g1^3*t^8.5)/g2^19 + (g2^17*t^8.5)/g1^3 + (2*g1^3*t^8.51)/g2^22 - (2*g2^14*t^8.51)/g1^3 - (g1^3*t^8.52)/g2^25 - (g2^11*t^8.52)/g1^3 - (g1^3*t^8.53)/g2^28 + g2^27*t^8.92 + g2^24*t^8.93 + g2^21*t^8.94 + g2^18*t^8.95 + 4*g2^12*t^8.96 + 3*g2^15*t^8.96 - 2*g2^9*t^8.97 - 2*g2^6*t^8.98 + 7*g2^3*t^8.99 - t^4./(g2*y) - t^5.01/(g2^2*y) - (g2^8*t^6.98)/y - (g2^5*t^6.99)/y - t^7./(g2*y) - (2*t^7.01)/(g2^4*y) - (g2^7*t^7.98)/y - (g2^4*t^7.99)/y - (2*t^8.01)/(g2^5*y) - t^8.01/(g2^2*y) + (g2^15*t^8.96)/y + (g2^9*t^8.97)/y + (2*g2^6*t^8.98)/y + (g2^3*t^8.99)/y - (t^4.*y)/g2 - (t^5.01*y)/g2^2 - g2^8*t^6.98*y - g2^5*t^6.99*y - (t^7.*y)/g2 - (2*t^7.01*y)/g2^4 - g2^7*t^7.98*y - g2^4*t^7.99*y - (2*t^8.01*y)/g2^5 - (t^8.01*y)/g2^2 + g2^15*t^8.96*y + g2^9*t^8.97*y + 2*g2^6*t^8.98*y + g2^3*t^8.99*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57617 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4537 | 1.644 | 0.8843 | [X:[1.3275], M:[0.9913], q:[0.4912, 0.4999], qb:[0.5088, 0.4826], phi:[0.3362]] | t^2.92 + t^2.95 + t^2.97 + t^3. + t^3.03 + t^3.93 + t^3.96 + t^3.98 + t^4.01 + t^4.03 + t^4.94 + t^4.97 + t^5.02 + t^5.04 + t^5.43 + t^5.46 + t^5.48 + t^5.51 + t^5.84 + t^5.87 + 2*t^5.9 + t^5.92 + 3*t^5.95 + t^5.97 - 2*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |