Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60132 | SU3adj1nf2 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4182 | 1.6227 | 0.874 | [X:[1.3635], M:[0.774, 0.774], q:[0.6667, 0.3484], qb:[0.5593, 0.516], phi:[0.3183]] | [X:[[0, 2]], M:[[1, -5], [1, -5]], q:[[0, 0], [0, 1]], qb:[[-1, 5], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}^{3}$ | -2 | 2*t^2.32 + t^2.59 + t^2.72 + t^2.86 + 2*t^3.55 + t^4.09 + 2*t^4.5 + 2*t^4.63 + 3*t^4.64 + 2*t^4.92 + 2*t^5.05 + 3*t^5.19 + t^5.32 + t^5.45 + 2*t^5.46 + 2*t^5.59 + 2*t^5.73 + t^5.86 + 3*t^5.87 - 2*t^6. - t^6.13 + 2*t^6.14 + 2*t^6.27 + 4*t^6.41 + 2*t^6.68 + 2*t^6.81 + 3*t^6.82 + 2*t^6.95 + 4*t^6.97 - t^7.08 + 5*t^7.1 + 3*t^7.23 + 3*t^7.24 + 2*t^7.36 + 3*t^7.37 + 6*t^7.51 + 4*t^7.64 + 2*t^7.77 + 4*t^7.78 + t^7.9 + 3*t^7.91 + 9*t^8.05 + t^8.17 + 6*t^8.18 + 4*t^8.19 + t^8.31 - 3*t^8.32 + 3*t^8.46 + t^8.58 + 3*t^8.59 - 2*t^8.72 + 8*t^8.73 - t^8.85 + t^8.86 + t^8.99 + t^8.86/y^2 - t^3.95/y - t^4.91/y - (2*t^6.28)/y - t^6.55/y - t^6.68/y - t^6.82/y - (2*t^7.23)/y - (2*t^7.5)/y + t^7.64/y - t^7.77/y + (2*t^7.92)/y + (2*t^8.05)/y + (2*t^8.19)/y + t^8.32/y - t^8.46/y + t^8.59/y - (3*t^8.6)/y + (2*t^8.87)/y - t^3.95*y - t^4.91*y - 2*t^6.28*y - t^6.55*y - t^6.68*y - t^6.82*y - 2*t^7.23*y - 2*t^7.5*y + t^7.64*y - t^7.77*y + 2*t^7.92*y + 2*t^8.05*y + 2*t^8.19*y + t^8.32*y - t^8.46*y + t^8.59*y - 3*t^8.6*y + 2*t^8.87*y + t^8.86*y^2 | (2*g1*t^2.32)/g2^5 + g1*g2*t^2.59 + (g2^6*t^2.72)/g1 + t^2.86/g2^3 + 2*g1*t^3.55 + g2^2*t^4.09 + (2*g1*t^4.5)/g2 + (2*g2^4*t^4.63)/g1 + (3*g1^2*t^4.64)/g2^10 + (2*g1^2*t^4.92)/g2^4 + 2*g2*t^5.05 + (2*g1*t^5.19)/g2^8 + g1^2*g2^2*t^5.19 + g2^7*t^5.32 + (g2^12*t^5.45)/g1^2 + (2*g1*t^5.46)/g2^2 + (2*g2^3*t^5.59)/g1 + t^5.73/g2^6 + g1*g2^4*t^5.73 + (g2^9*t^5.86)/g1 + (3*g1^2*t^5.87)/g2^5 - 2*t^6. - (g2^5*t^6.13)/g1^2 + 2*g1^2*g2*t^6.14 + 2*g2^6*t^6.27 + (4*g1*t^6.41)/g2^3 + 2*g1*g2^3*t^6.68 + (2*g2^8*t^6.81)/g1 + (3*g1^2*t^6.82)/g2^6 + (2*t^6.95)/g2 + (4*g1^3*t^6.97)/g2^15 - (g2^4*t^7.08)/g1^2 + 5*g1^2*t^7.1 + 3*g2^5*t^7.23 + (3*g1^3*t^7.24)/g2^9 + (2*g2^10*t^7.36)/g1^2 + (3*g1*t^7.37)/g2^4 + (3*g1^2*t^7.51)/g2^13 + (3*g1^3*t^7.51)/g2^3 + 4*g1*g2^2*t^7.64 + (2*g2^7*t^7.77)/g1 + (3*g1^2*t^7.78)/g2^7 + g1^3*g2^3*t^7.78 + (g2^12*t^7.9)/g1^3 + (2*t^7.91)/g2^2 + g1*g2^8*t^7.91 - (g2^3*t^8.04)/g1^2 + (g2^13*t^8.04)/g1 + (2*g1*t^8.05)/g2^11 + (7*g1^2*t^8.05)/g2 + (g2^18*t^8.17)/g1^3 + 6*g2^4*t^8.18 + (4*g1^3*t^8.19)/g2^10 + (g2^9*t^8.31)/g1^2 - (4*g1*t^8.32)/g2^5 + g1^2*g2^5*t^8.32 - (2*t^8.45)/g1 + 2*g2^10*t^8.45 + (3*g1^3*t^8.46)/g2^4 + (g2^15*t^8.58)/g1^2 + t^8.59/g2^9 + 2*g1*g2*t^8.59 - (2*g2^6*t^8.72)/g1 + (6*g1^2*t^8.73)/g2^8 + 2*g1^3*g2^2*t^8.73 - (g2^11*t^8.85)/g1^3 - t^8.86/g2^3 + 2*g1*g2^7*t^8.86 - (g2^2*t^8.99)/g1^2 + (2*g2^12*t^8.99)/g1 + t^8.86/(g2^3*y^2) - t^3.95/(g2*y) - t^4.91/(g2^2*y) - (2*g1*t^6.28)/(g2^6*y) - (g1*t^6.55)/y - (g2^5*t^6.68)/(g1*y) - t^6.82/(g2^4*y) - (2*g1*t^7.23)/(g2^7*y) - (2*g1*t^7.5)/(g2*y) + (g1^2*t^7.64)/(g2^10*y) - t^7.77/(g2^5*y) + (2*g1^2*t^7.92)/(g2^4*y) + (2*g2*t^8.05)/y + (2*g1*t^8.19)/(g2^8*y) + (g2^7*t^8.32)/y - (g1*t^8.46)/(g2^2*y) + (g2^3*t^8.59)/(g1*y) - (3*g1^2*t^8.6)/(g2^11*y) + (2*g1^2*t^8.87)/(g2^5*y) - (t^3.95*y)/g2 - (t^4.91*y)/g2^2 - (2*g1*t^6.28*y)/g2^6 - g1*t^6.55*y - (g2^5*t^6.68*y)/g1 - (t^6.82*y)/g2^4 - (2*g1*t^7.23*y)/g2^7 - (2*g1*t^7.5*y)/g2 + (g1^2*t^7.64*y)/g2^10 - (t^7.77*y)/g2^5 + (2*g1^2*t^7.92*y)/g2^4 + 2*g2*t^8.05*y + (2*g1*t^8.19*y)/g2^8 + g2^7*t^8.32*y - (g1*t^8.46*y)/g2^2 + (g2^3*t^8.59*y)/g1 - (3*g1^2*t^8.6*y)/g2^11 + (2*g1^2*t^8.87*y)/g2^5 + (t^8.86*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61138 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | 1.3434 | 1.517 | 0.8856 | [X:[1.4074], M:[0.8889, 0.8889], q:[0.6667, 0.3704], qb:[0.4444, 0.7407], phi:[0.2963]] | t^2.44 + 3*t^2.67 + t^3.33 + 5*t^4.22 + t^4.89 + 5*t^5.11 + 6*t^5.33 + 2*t^5.78 + t^6. - t^3.89/y - t^4.78/y - t^3.89*y - t^4.78*y | detail | {a: 1741/1296, c: 983/648, X1: 38/27, M1: 8/9, M2: 8/9, q1: 2/3, q2: 10/27, qb1: 4/9, qb2: 20/27, phi1: 8/27} |
61077 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4084 | 1.6103 | 0.8746 | [X:[1.3956], M:[0.6978, 0.6978], q:[0.6667, 0.3645], qb:[0.6355, 0.5203], phi:[0.3022]] | 2*t^2.09 + t^2.65 + t^2.72 + t^3. + 2*t^3.56 + 4*t^4.19 + 2*t^4.47 + 2*t^4.75 + 4*t^4.81 + 2*t^5.09 + t^5.31 + 2*t^5.37 + t^5.44 + 4*t^5.65 + 2*t^5.72 + t^5.93 - t^6. - t^3.91/y - t^4.81/y - (2*t^6.)/y - t^3.91*y - t^4.81*y - 2*t^6.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57691 | SU3adj1nf2 | ${}\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ | 1.4007 | 1.5922 | 0.8798 | [X:[1.3576], M:[0.791], q:[0.6667, 0.3455], qb:[0.5424, 0.5184], phi:[0.3212]] | t^2.37 + t^2.59 + t^2.66 + t^2.89 + 2*t^3.56 + t^3.63 + t^4.07 + 2*t^4.52 + 2*t^4.59 + t^4.75 + t^4.96 + t^5.04 + t^5.18 + 2*t^5.26 + t^5.33 + 2*t^5.48 + 2*t^5.55 + t^5.7 + t^5.77 + t^5.78 + t^5.93 - t^6. - t^3.96/y - t^4.93/y - t^3.96*y - t^4.93*y | detail |