Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
60060 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4808 | 1.7104 | 0.8657 | [X:[], M:[0.6713, 0.9972], q:[0.5675, 0.5308], qb:[0.4325, 0.4637], phi:[0.3343]] | [X:[], M:[[-10, -5], [6, 3]], q:[[-5, 0], [12, 1]], qb:[[5, 0], [0, 5]], phi:[[-2, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}$ | -2 | 2*t^2.01 + t^2.89 + t^2.98 + t^2.99 + t^3. + t^3.09 + t^3.89 + t^4. + t^4.01 + t^4.02 + t^4.03 + t^4.1 + 3*t^4.9 + 3*t^4.99 + 2*t^5. + 4*t^5.01 + t^5.08 + 2*t^5.1 + t^5.11 + t^5.78 + t^5.87 + t^5.88 + t^5.89 + t^5.9 + t^5.97 + 4*t^5.98 + 2*t^5.99 - 2*t^6. + t^6.01 + 3*t^6.02 + t^6.03 + t^6.04 + t^6.08 + 2*t^6.09 + t^6.1 + t^6.19 + t^6.78 + 2*t^6.88 + 2*t^6.89 + 3*t^6.9 + t^6.91 + t^6.92 + 7*t^6.99 + 3*t^7. + 4*t^7.01 + 3*t^7.02 + t^7.03 + t^7.08 + 3*t^7.09 + 3*t^7.1 + t^7.11 + t^7.12 + t^7.18 + t^7.19 + 5*t^7.79 + 4*t^7.88 + 2*t^7.89 + 5*t^7.9 - t^7.91 + 4*t^7.97 + 3*t^7.98 + 7*t^7.99 + 4*t^8. - t^8.01 + 2*t^8.02 + 2*t^8.03 + t^8.04 + t^8.05 + t^8.06 + 2*t^8.07 + 4*t^8.08 + 3*t^8.09 + 2*t^8.1 + t^8.11 + t^8.18 + 2*t^8.19 + t^8.2 + t^8.67 + t^8.76 + t^8.77 + t^8.78 + 2*t^8.79 - t^8.8 + t^8.86 + 4*t^8.87 + 5*t^8.88 - 3*t^8.89 + 3*t^8.9 + 5*t^8.91 + t^8.92 + t^8.93 + t^8.95 + t^8.96 + 3*t^8.97 + 3*t^8.98 + 2*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.02/y - t^6.89/y - (2*t^6.99)/y - t^7./y - t^7.01/y - t^7.1/y + t^7.9/y + t^7.99/y + (2*t^8.)/y + t^8.01/y - t^8.02/y - t^8.03/y + t^8.11/y + t^8.87/y + t^8.88/y + t^8.89/y - t^8.9/y + (3*t^8.98)/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.02*y - t^6.89*y - 2*t^6.99*y - t^7.*y - t^7.01*y - t^7.1*y + t^7.9*y + t^7.99*y + 2*t^8.*y + t^8.01*y - t^8.02*y - t^8.03*y + t^8.11*y + t^8.87*y + t^8.88*y + t^8.89*y - t^8.9*y + 3*t^8.98*y | t^2.01/(g1^10*g2^5) + t^2.01/(g1^4*g2^2) + g1^17*g2*t^2.89 + g1^12*g2^6*t^2.98 + g1^6*g2^3*t^2.99 + t^3. + (g2^5*t^3.09)/g1^5 + g1^15*t^3.89 + t^4./(g1^2*g2) + t^4.01/(g1^8*g2^4) + t^4.02/(g1^14*g2^7) + t^4.03/(g1^20*g2^10) + (g2^4*t^4.1)/g1^7 + (g1^7*t^4.9)/g2^4 + (2*g1^13*t^4.9)/g2 + 3*g1^8*g2^4*t^4.99 + 2*g1^2*g2*t^5. + t^5.01/(g1^10*g2^5) + (3*t^5.01)/(g1^4*g2^2) + g1^3*g2^9*t^5.08 + (2*g2^3*t^5.1)/g1^9 + t^5.11/g1^15 + g1^34*g2^2*t^5.78 + g1^29*g2^7*t^5.87 + g1^23*g2^4*t^5.88 + g1^17*g2*t^5.89 + (g1^11*t^5.9)/g2^2 + g1^24*g2^12*t^5.97 + 3*g1^12*g2^6*t^5.98 + g1^18*g2^9*t^5.98 + 2*g1^6*g2^3*t^5.99 - 2*t^6. + t^6.01/(g1^6*g2^3) + t^6.02/(g1^18*g2^9) + (2*t^6.02)/(g1^12*g2^6) + t^6.03/(g1^24*g2^12) + t^6.04/(g1^30*g2^15) + g1^7*g2^11*t^6.08 + 2*g1*g2^8*t^6.09 + (g2^2*t^6.1)/g1^11 + (g2^10*t^6.19)/g1^10 + g1^32*g2*t^6.78 + g1^21*g2^3*t^6.88 + g1^27*g2^6*t^6.88 + 2*g1^15*t^6.89 + (3*g1^9*t^6.9)/g2^3 + (g1^3*t^6.91)/g2^6 + t^6.92/(g1^3*g2^9) + 5*g1^4*g2^2*t^6.99 + 2*g1^10*g2^5*t^6.99 + (3*t^7.)/(g1^2*g2) + (4*t^7.01)/(g1^8*g2^4) + (3*t^7.02)/(g1^14*g2^7) + t^7.03/(g1^20*g2^10) + g1^5*g2^10*t^7.08 + (3*g2^7*t^7.09)/g1 + (2*g2*t^7.1)/g1^13 + (g2^4*t^7.1)/g1^7 + t^7.11/(g1^19*g2^2) + t^7.12/(g1^25*g2^5) + (g2^12*t^7.18)/g1^6 + (g2^9*t^7.19)/g1^12 + 4*g1^30*t^7.79 + (g1^24*t^7.79)/g2^3 + 4*g1^25*g2^5*t^7.88 + 2*g1^19*g2^2*t^7.89 + (g1^7*t^7.9)/g2^4 + (4*g1^13*t^7.9)/g2 - (g1*t^7.91)/g2^7 + 4*g1^20*g2^10*t^7.97 + 3*g1^14*g2^7*t^7.98 + 7*g1^8*g2^4*t^7.99 + 4*g1^2*g2*t^8. - t^8.01/(g1^10*g2^5) + (2*t^8.02)/(g1^16*g2^8) + (2*t^8.03)/(g1^22*g2^11) + t^8.04/(g1^28*g2^14) + t^8.05/(g1^34*g2^17) + t^8.06/(g1^40*g2^20) + g1^9*g2^12*t^8.07 + g1^15*g2^15*t^8.07 + 4*g1^3*g2^9*t^8.08 + (3*g2^6*t^8.09)/g1^3 + (2*g2^3*t^8.1)/g1^9 + t^8.11/g1^15 + (g2^14*t^8.18)/g1^2 + (2*g2^8*t^8.19)/g1^14 + (g2^5*t^8.2)/g1^20 + g1^51*g2^3*t^8.67 + g1^46*g2^8*t^8.76 + g1^40*g2^5*t^8.77 + g1^34*g2^2*t^8.78 + (2*g1^28*t^8.79)/g2 - (g1^22*t^8.8)/g2^4 + g1^41*g2^13*t^8.86 + 3*g1^29*g2^7*t^8.87 + g1^35*g2^10*t^8.87 + 5*g1^23*g2^4*t^8.88 - 3*g1^17*g2*t^8.89 + (3*g1^11*t^8.9)/g2^2 + (2*t^8.91)/(g1*g2^8) + (3*g1^5*t^8.91)/g2^5 + t^8.92/(g1^7*g2^11) + t^8.93/(g1^13*g2^14) + g1^36*g2^18*t^8.95 + g1^30*g2^15*t^8.96 + 3*g1^24*g2^12*t^8.97 - 2*g1^12*g2^6*t^8.98 + 5*g1^18*g2^9*t^8.98 + 2*g1^6*g2^3*t^8.99 - t^4./(g1^2*g2*y) - t^5.01/(g1^4*g2^2*y) - t^6.01/(g1^6*g2^3*y) - t^6.02/(g1^12*g2^6*y) - (g1^15*t^6.89)/y - (g1^4*g2^2*t^6.99)/y - (g1^10*g2^5*t^6.99)/y - t^7./(g1^2*g2*y) - t^7.01/(g1^8*g2^4*y) - (g2^4*t^7.1)/(g1^7*y) + (g1^7*t^7.9)/(g2^4*y) + (g1^8*g2^4*t^7.99)/y + (2*g1^2*g2*t^8.)/y + t^8.01/(g1^4*g2^2*y) - t^8.02/(g1^16*g2^8*y) - t^8.03/(g1^22*g2^11*y) + t^8.11/(g1^15*y) + (g1^29*g2^7*t^8.87)/y + (g1^23*g2^4*t^8.88)/y + (g1^17*g2*t^8.89)/y - (g1^11*t^8.9)/(g2^2*y) + (2*g1^12*g2^6*t^8.98)/y + (g1^18*g2^9*t^8.98)/y - (t^4.*y)/(g1^2*g2) - (t^5.01*y)/(g1^4*g2^2) - (t^6.01*y)/(g1^6*g2^3) - (t^6.02*y)/(g1^12*g2^6) - g1^15*t^6.89*y - g1^4*g2^2*t^6.99*y - g1^10*g2^5*t^6.99*y - (t^7.*y)/(g1^2*g2) - (t^7.01*y)/(g1^8*g2^4) - (g2^4*t^7.1*y)/g1^7 + (g1^7*t^7.9*y)/g2^4 + g1^8*g2^4*t^7.99*y + 2*g1^2*g2*t^8.*y + (t^8.01*y)/(g1^4*g2^2) - (t^8.02*y)/(g1^16*g2^8) - (t^8.03*y)/(g1^22*g2^11) + (t^8.11*y)/g1^15 + g1^29*g2^7*t^8.87*y + g1^23*g2^4*t^8.88*y + g1^17*g2*t^8.89*y - (g1^11*t^8.9*y)/g2^2 + 2*g1^12*g2^6*t^8.98*y + g1^18*g2^9*t^8.98*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57472 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4961 | 1.7283 | 0.8656 | [X:[], M:[0.6973, 0.9816], q:[0.5, 0.4816], qb:[0.5, 0.4816], phi:[0.3395]] | t^2.04 + t^2.09 + t^2.89 + 3*t^2.94 + t^3. + 2*t^3.96 + t^4.02 + t^4.07 + t^4.13 + t^4.18 + 2*t^4.93 + 6*t^4.98 + 5*t^5.04 + t^5.09 + 2*t^5.41 + 2*t^5.46 + t^5.78 + 3*t^5.83 + 7*t^5.89 + t^5.94 - t^6. - t^4.02/y - t^5.04/y - t^4.02*y - t^5.04*y | detail |