Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
60029 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.2512 1.4514 0.862 [X:[1.3993, 1.4017], M:[0.9988, 1.0012], q:[0.384, 0.3815], qb:[0.2167, 0.6147], phi:[0.4005]] [X:[[0, -3], [0, 7]], M:[[0, -5], [0, 5]], q:[[-1, -5], [-1, -15]], qb:[[1, 8], [1, 0]], phi:[[0, 2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -2 t^2.4 + t^2.99 + 3*t^3. + t^3.6 + t^4.19 + 3*t^4.2 + 2*t^4.21 + t^4.35 + t^4.64 + t^4.65 + 2*t^5.39 + 3*t^5.4 + t^5.41 + t^5.54 + t^5.55 + t^5.56 + t^5.84 + t^5.85 + t^5.98 + 5*t^5.99 - 2*t^6. - t^6.45 + t^6.59 + 4*t^6.6 + 3*t^6.61 + t^6.74 + 2*t^6.75 + t^7.04 + 4*t^7.05 + t^7.06 + t^7.18 + 11*t^7.19 + 4*t^7.2 + t^7.21 + t^7.33 + t^7.34 - t^7.35 - t^7.36 + t^7.63 + 3*t^7.64 - t^7.65 - t^7.66 - t^7.79 + 3*t^7.8 + 2*t^7.81 + t^7.94 + t^7.95 + t^7.96 - t^8.24 + 3*t^8.25 + 3*t^8.38 + 8*t^8.39 + 14*t^8.4 + t^8.41 + t^8.53 + 6*t^8.54 + t^8.55 + t^8.69 + 2*t^8.83 + 4*t^8.84 + 3*t^8.85 - 3*t^8.86 + 3*t^8.97 + 3*t^8.98 - t^8.99 - t^4.2/y - t^5.4/y - t^6.6/y - t^7.19/y - t^7.2/y + t^7.8/y - (2*t^7.81)/y - t^8.4/y - t^8.41/y + (5*t^8.99)/y - t^4.2*y - t^5.4*y - t^6.6*y - t^7.19*y - t^7.2*y + t^7.8*y - 2*t^7.81*y - t^8.4*y - t^8.41*y + 5*t^8.99*y g2^4*t^2.4 + t^2.99/g2^15 + (2*t^3.)/g2^5 + g2^5*t^3. + g2^6*t^3.6 + t^4.19/g2^13 + (3*t^4.2)/g2^3 + 2*g2^7*t^4.21 + g1^3*g2^18*t^4.35 + t^4.64/(g1^3*g2^33) + t^4.65/(g1^3*g2^23) + (2*t^5.39)/g2^11 + (3*t^5.4)/g2 + g2^9*t^5.41 + g1^3*g2^10*t^5.54 + g1^3*g2^20*t^5.55 + g1^3*g2^30*t^5.56 + t^5.84/(g1^3*g2^31) + t^5.85/(g1^3*g2^21) + t^5.98/g2^30 + (2*t^5.99)/g2^20 + (3*t^5.99)/g2^10 - 2*t^6. - t^6.45/(g1^3*g2^20) + t^6.59/g2^9 + 4*g2*t^6.6 + 3*g2^11*t^6.61 + g1^3*g2^12*t^6.74 + 2*g1^3*g2^22*t^6.75 + t^7.04/(g1^3*g2^39) + (2*t^7.05)/(g1^3*g2^29) + (2*t^7.05)/(g1^3*g2^19) + t^7.06/(g1^3*g2^9) + t^7.18/g2^28 + (5*t^7.19)/g2^18 + (6*t^7.19)/g2^8 + 4*g2^2*t^7.2 + g2^12*t^7.21 + g1^3*g2^3*t^7.33 + g1^3*g2^13*t^7.34 - g1^3*g2^23*t^7.35 - g1^3*g2^33*t^7.36 + t^7.63/(g1^3*g2^48) + (3*t^7.64)/(g1^3*g2^38) - t^7.65/(g1^3*g2^18) - t^7.66/(g1^3*g2^8) - t^7.79/g2^17 + 3*g2^3*t^7.8 + 2*g2^13*t^7.81 + g1^3*g2^14*t^7.94 + g1^3*g2^24*t^7.95 + g1^3*g2^34*t^7.96 - t^8.24/(g1^3*g2^37) + t^8.25/(g1^3*g2^27) + (2*t^8.25)/(g1^3*g2^17) + (3*t^8.38)/g2^26 + (8*t^8.39)/g2^16 + (11*t^8.4)/g2^6 + 3*g2^4*t^8.4 + g2^14*t^8.41 + (g1^3*t^8.53)/g2^5 + 3*g1^3*g2^5*t^8.54 + 3*g1^3*g2^15*t^8.54 + g1^3*g2^25*t^8.55 + g1^6*g2^36*t^8.69 + (2*t^8.83)/(g1^3*g2^46) + (4*t^8.84)/(g1^3*g2^36) + (3*t^8.85)/(g1^3*g2^26) - (2*t^8.86)/(g1^3*g2^16) - t^8.86/(g1^3*g2^6) + t^8.97/g2^45 + (2*t^8.97)/g2^35 + (3*t^8.98)/g2^25 - t^8.99/g2^15 - (g2^2*t^4.2)/y - (g2^4*t^5.4)/y - (g2^6*t^6.6)/y - t^7.19/(g2^13*y) - t^7.2/(g2^3*y) + t^7.8/(g2^2*y) - (2*g2^8*t^7.81)/y - t^8.4/(g2*y) - (g2^9*t^8.41)/y + (2*t^8.99)/(g2^20*y) + (3*t^8.99)/(g2^10*y) - g2^2*t^4.2*y - g2^4*t^5.4*y - g2^6*t^6.6*y - (t^7.19*y)/g2^13 - (t^7.2*y)/g2^3 + (t^7.8*y)/g2^2 - 2*g2^8*t^7.81*y - (t^8.4*y)/g2 - g2^9*t^8.41*y + (2*t^8.99*y)/g2^20 + (3*t^8.99*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57639 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.2512 1.4516 0.8619 [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y detail