Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5969 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1\tilde{q}_1^2$ + $ M_9\phi_1\tilde{q}_1\tilde{q}_2$ 0.6961 0.9605 0.7247 [X:[], M:[0.9228, 1.2315, 0.7685, 0.7685, 0.6929, 0.7685, 0.8473, 0.7685, 0.6929], q:[0.7307, 0.3465], qb:[0.3465, 0.422], phi:[0.5386]] [X:[], M:[[4], [-12], [12], [12], [-10], [12], [-18], [12], [-10]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_9$, $ q_2\tilde{q}_1$, $ M_3$, $ M_4$, $ M_6$, $ M_8$, $ q_2\tilde{q}_2$, $ M_7$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_9$, $ M_9^2$, $ M_5q_2\tilde{q}_1$, $ M_9q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_5M_6$, $ M_5M_8$, $ M_3M_9$, $ M_4M_9$, $ M_6M_9$, $ M_8M_9$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_9q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_3M_6$, $ M_4M_6$, $ M_6^2$, $ M_3M_8$, $ M_4M_8$, $ M_6M_8$, $ M_8^2$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5M_7$, $ M_7M_9$, $ M_7q_2\tilde{q}_1$, $ M_1M_5$, $ M_3M_7$, $ M_4M_7$, $ M_6M_7$, $ M_7M_8$, $ M_1M_9$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ M_1M_3$, $ M_1M_4$, $ M_1M_6$, $ M_1M_8$, $ \phi_1q_1\tilde{q}_2$, $ M_7^2$, $ M_1M_7$, $ M_5\phi_1^2$, $ M_9\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_9q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ M_6\phi_1^2$, $ M_8\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ M_8q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$ . -5 3*t^2.08+5*t^2.31+t^2.54+t^2.77+2*t^3.23+t^4.15+6*t^4.16+15*t^4.38+15*t^4.61+3*t^4.62+8*t^4.85+5*t^5.07+t^5.08+7*t^5.31+10*t^5.54-5*t^6.+10*t^6.24+5*t^6.45+28*t^6.46+43*t^6.69+6*t^6.7+35*t^6.92+18*t^6.93+24*t^7.15+3*t^7.16+15*t^7.38+17*t^7.39+27*t^7.62+t^7.63+24*t^7.84+t^7.85-15*t^8.08+t^8.3-28*t^8.31+15*t^8.32+37*t^8.54+15*t^8.76+66*t^8.77+10*t^8.78-t^4.62/y-(2*t^6.69)/y-(3*t^6.92)/y+(2*t^7.16)/y+(15*t^7.38)/y+(10*t^7.61)/y+(3*t^7.62)/y+(8*t^7.85)/y+(6*t^8.07)/y+(10*t^8.31)/y+(12*t^8.54)/y-t^8.77/y-t^4.62*y-2*t^6.69*y-3*t^6.92*y+2*t^7.16*y+15*t^7.38*y+10*t^7.61*y+3*t^7.62*y+8*t^7.85*y+6*t^8.07*y+10*t^8.31*y+12*t^8.54*y-t^8.77*y (3*t^2.08)/g1^10+5*g1^12*t^2.31+t^2.54/g1^18+g1^4*t^2.77+(2*t^3.23)/g1^4+g1^32*t^4.15+(6*t^4.16)/g1^20+15*g1^2*t^4.38+15*g1^24*t^4.61+(3*t^4.62)/g1^28+(8*t^4.85)/g1^6+5*g1^16*t^5.07+t^5.08/g1^36+(7*t^5.31)/g1^14+10*g1^8*t^5.54-5*t^6.+(10*t^6.24)/g1^30+5*g1^44*t^6.45+(28*t^6.46)/g1^8+43*g1^14*t^6.69+(6*t^6.7)/g1^38+35*g1^36*t^6.92+(18*t^6.93)/g1^16+24*g1^6*t^7.15+(3*t^7.16)/g1^46+15*g1^28*t^7.38+(17*t^7.39)/g1^24+(27*t^7.62)/g1^2+t^7.63/g1^54+24*g1^20*t^7.84+t^7.85/g1^32-(15*t^8.08)/g1^10+g1^64*t^8.3-28*g1^12*t^8.31+(15*t^8.32)/g1^40+(37*t^8.54)/g1^18+15*g1^56*t^8.76+66*g1^4*t^8.77+(10*t^8.78)/g1^48-t^4.62/(g1^2*y)-(2*t^6.69)/(g1^12*y)-(3*g1^10*t^6.92)/y+(2*t^7.16)/(g1^20*y)+(15*g1^2*t^7.38)/y+(10*g1^24*t^7.61)/y+(3*t^7.62)/(g1^28*y)+(8*t^7.85)/(g1^6*y)+(6*g1^16*t^8.07)/y+(10*t^8.31)/(g1^14*y)+(12*g1^8*t^8.54)/y-t^8.77/(g1^22*y)-(t^4.62*y)/g1^2-(2*t^6.69*y)/g1^12-3*g1^10*t^6.92*y+(2*t^7.16*y)/g1^20+15*g1^2*t^7.38*y+10*g1^24*t^7.61*y+(3*t^7.62*y)/g1^28+(8*t^7.85*y)/g1^6+6*g1^16*t^8.07*y+(10*t^8.31*y)/g1^14+12*g1^8*t^8.54*y-(t^8.77*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4463 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2^2$ + $ M_7q_1\tilde{q}_2$ + $ M_8\phi_1\tilde{q}_1^2$ 0.6754 0.9209 0.7334 [X:[], M:[0.9222, 1.2333, 0.7667, 0.7667, 0.6944, 0.7667, 0.8499, 0.7667], q:[0.7306, 0.3472], qb:[0.3472, 0.4196], phi:[0.5389]] 2*t^2.08+5*t^2.3+t^2.55+t^2.77+2*t^3.23+t^3.92+t^4.13+3*t^4.17+10*t^4.38+15*t^4.6+2*t^4.63+7*t^4.85+5*t^5.07+t^5.1+5*t^5.32+10*t^5.53-3*t^6.-t^4.62/y-t^4.62*y detail