Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59685 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4326 1.6247 0.8818 [X:[1.3529], M:[0.8089], q:[0.5686, 0.4362], qb:[0.4314, 0.6225], phi:[0.3235]] [X:[[12]], M:[[-15]], q:[[8], [29]], qb:[[-8], [7]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -1 t^2.43 + t^2.6 + t^2.91 + t^3. + t^3.18 + t^3.57 + t^3.97 + t^4.06 + t^4.15 + 2*t^4.54 + t^4.85 + t^4.94 + t^5.03 + t^5.12 + t^5.21 + t^5.29 + t^5.34 + t^5.43 + 2*t^5.51 + t^5.6 + t^5.69 + t^5.78 + t^5.82 + t^5.91 - t^6. + t^6.09 + 2*t^6.18 + t^6.26 + t^6.35 + 2*t^6.49 + t^6.57 + 2*t^6.66 + 2*t^6.75 + t^6.79 + t^6.84 + t^6.88 + 2*t^6.97 + 2*t^7.06 + 4*t^7.15 + 2*t^7.24 + t^7.28 + t^7.32 + 2*t^7.46 + 3*t^7.54 + 2*t^7.63 + 3*t^7.72 + t^7.76 + t^7.81 + t^7.9 + 3*t^7.94 + 3*t^8.03 + 6*t^8.12 + 2*t^8.21 + 3*t^8.29 + t^8.38 + t^8.47 + 4*t^8.51 + 4*t^8.69 + t^8.74 + 2*t^8.78 - t^8.82 + 3*t^8.87 + 2*t^8.91 + t^8.96 + t^8.91/y^2 - t^3.97/y - t^4.94/y - t^6.4/y - t^6.57/y - t^6.88/y - t^6.97/y - t^7.15/y - t^7.37/y - t^7.54/y - t^7.85/y - t^7.94/y + t^8.03/y - t^8.12/y + t^8.34/y + t^8.43/y + (2*t^8.6)/y + t^8.78/y - t^8.82/y - t^3.97*y - t^4.94*y - t^6.4*y - t^6.57*y - t^6.88*y - t^6.97*y - t^7.15*y - t^7.37*y - t^7.54*y - t^7.85*y - t^7.94*y + t^8.03*y - t^8.12*y + t^8.34*y + t^8.43*y + 2*t^8.6*y + t^8.78*y - t^8.82*y + t^8.91*y^2 t^2.43/g1^15 + g1^21*t^2.6 + t^2.91/g1^18 + t^3. + g1^36*t^3.18 + g1^15*t^3.57 + t^3.97/g1^6 + g1^12*t^4.06 + g1^30*t^4.15 + 2*g1^9*t^4.54 + t^4.85/g1^30 + t^4.94/g1^12 + g1^6*t^5.03 + g1^24*t^5.12 + g1^42*t^5.21 + g1^60*t^5.29 + t^5.34/g1^33 + t^5.43/g1^15 + 2*g1^3*t^5.51 + g1^21*t^5.6 + g1^39*t^5.69 + g1^57*t^5.78 + t^5.82/g1^36 + t^5.91/g1^18 - t^6. + g1^18*t^6.09 + 2*g1^36*t^6.18 + g1^54*t^6.26 + g1^72*t^6.35 + (2*t^6.49)/g1^3 + g1^15*t^6.57 + 2*g1^33*t^6.66 + 2*g1^51*t^6.75 + t^6.79/g1^42 + g1^69*t^6.84 + t^6.88/g1^24 + (2*t^6.97)/g1^6 + 2*g1^12*t^7.06 + 4*g1^30*t^7.15 + 2*g1^48*t^7.24 + t^7.28/g1^45 + g1^66*t^7.32 + (2*t^7.46)/g1^9 + 3*g1^9*t^7.54 + 2*g1^27*t^7.63 + 3*g1^45*t^7.72 + t^7.76/g1^48 + g1^63*t^7.81 + g1^81*t^7.9 + (3*t^7.94)/g1^12 + 3*g1^6*t^8.03 + 6*g1^24*t^8.12 + 2*g1^42*t^8.21 + 3*g1^60*t^8.29 + g1^78*t^8.38 + g1^96*t^8.47 + 4*g1^3*t^8.51 + 4*g1^39*t^8.69 + t^8.74/g1^54 + 2*g1^57*t^8.78 - t^8.82/g1^36 + 3*g1^75*t^8.87 + (2*t^8.91)/g1^18 + g1^93*t^8.96 + t^8.91/(g1^18*y^2) - t^3.97/(g1^6*y) - t^4.94/(g1^12*y) - t^6.4/(g1^21*y) - (g1^15*t^6.57)/y - t^6.88/(g1^24*y) - t^6.97/(g1^6*y) - (g1^30*t^7.15)/y - t^7.37/(g1^27*y) - (g1^9*t^7.54)/y - t^7.85/(g1^30*y) - t^7.94/(g1^12*y) + (g1^6*t^8.03)/y - (g1^24*t^8.12)/y + t^8.34/(g1^33*y) + t^8.43/(g1^15*y) + (2*g1^21*t^8.6)/y + (g1^57*t^8.78)/y - t^8.82/(g1^36*y) - (t^3.97*y)/g1^6 - (t^4.94*y)/g1^12 - (t^6.4*y)/g1^21 - g1^15*t^6.57*y - (t^6.88*y)/g1^24 - (t^6.97*y)/g1^6 - g1^30*t^7.15*y - (t^7.37*y)/g1^27 - g1^9*t^7.54*y - (t^7.85*y)/g1^30 - (t^7.94*y)/g1^12 + g1^6*t^8.03*y - g1^24*t^8.12*y + (t^8.34*y)/g1^33 + (t^8.43*y)/g1^15 + 2*g1^21*t^8.6*y + g1^57*t^8.78*y - (t^8.82*y)/g1^36 + (t^8.91*y^2)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57417 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4634 1.6643 0.8793 [X:[1.3522], M:[0.6722], q:[0.4764, 0.4803], qb:[0.5236, 0.5763], phi:[0.3239]] t^2.017 + t^2.915 + t^3. + t^3.012 + t^3.158 + t^3.17 + t^3.972 + t^4.033 + t^4.057 + t^4.13 + t^4.141 + t^4.932 + t^4.943 + t^4.955 + t^5.017 + t^5.028 + t^5.102 + t^5.113 + t^5.175 + t^5.186 + t^5.271 + t^5.283 + t^5.83 + t^5.915 + t^5.927 - 2*t^6. - t^3.972/y - t^4.943/y - t^5.988/y - t^3.972*y - t^4.943*y - t^5.988*y detail