Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59663 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ 1.4749 1.6848 0.8754 [X:[], M:[0.9832, 0.6815, 1.3295], q:[0.514, 0.4804], qb:[0.5028, 0.4911], phi:[0.3353]] [X:[], M:[[1, 6, 0], [-1, -7, 1], [0, -2, 2]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ ${}$ -4 t^2.04 + t^2.91 + 2*t^2.95 + 2*t^3.02 + t^3.92 + t^3.99 + t^4.02 + t^4.06 + t^4.09 + t^4.93 + 2*t^4.96 + 2*t^4.99 + t^5.03 + 3*t^5.06 + t^5.43 + t^5.46 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.86 + 2*t^5.9 + 2*t^5.93 + 4*t^5.97 - 4*t^6. + 3*t^6.03 + t^6.07 + t^6.13 + t^6.44 + t^6.47 + t^6.5 + t^6.54 + t^6.84 + 2*t^6.87 + t^6.9 - t^6.91 + 5*t^6.94 + 3*t^6.97 + 2*t^7. + t^7.01 + 3*t^7.04 + 3*t^7.07 + t^7.1 + t^7.11 + t^7.34 + t^7.44 + t^7.47 + t^7.51 + 2*t^7.54 + t^7.58 + t^7.64 + 2*t^7.84 + t^7.87 + 3*t^7.88 + 3*t^7.91 + 5*t^7.94 + t^7.97 + 6*t^7.98 + 4*t^8.01 - t^8.04 - t^8.05 + 6*t^8.08 + t^8.11 + t^8.18 + t^8.35 + 2*t^8.38 + 2*t^8.41 - t^8.42 + 3*t^8.45 + 2*t^8.48 + 2*t^8.51 - 2*t^8.52 + t^8.55 - t^8.58 - t^8.62 + t^8.74 + 2*t^8.78 + 2*t^8.81 + t^8.84 + 4*t^8.85 + 5*t^8.88 - 2*t^8.91 + 2*t^8.92 - 3*t^8.95 + 10*t^8.98 - t^4.01/y - t^5.01/y - t^6.05/y - t^6.92/y - (2*t^6.96)/y - (2*t^7.02)/y - t^7.06/y - t^7.93/y + (2*t^7.99)/y - (2*t^8.03)/y + (2*t^8.06)/y - t^8.09/y + (2*t^8.86)/y + t^8.9/y + t^8.93/y + (4*t^8.97)/y - t^4.01*y - t^5.01*y - t^6.05*y - t^6.92*y - 2*t^6.96*y - 2*t^7.02*y - t^7.06*y - t^7.93*y + 2*t^7.99*y - 2*t^8.03*y + 2*t^8.06*y - t^8.09*y + 2*t^8.86*y + t^8.9*y + t^8.93*y + 4*t^8.97*y (g3*t^2.04)/(g1*g2^7) + g1*g3^6*t^2.91 + 2*g1*g2^6*t^2.95 + (g2^3*t^3.02)/g3^3 + (g3^6*t^3.02)/(g1*g2^12) + g1*g2*g3^5*t^3.92 + (g3^2*t^3.99)/g2^2 + (g3^5*t^4.02)/(g1*g2^11) + t^4.06/(g1*g2^5*g3) + (g3^2*t^4.09)/(g1^2*g2^14) + g1*g2^2*g3^4*t^4.93 + (g1*g2^8*t^4.96)/g3^2 + (g3^7*t^4.96)/g2^7 + (2*g3*t^4.99)/g2 + (g3^4*t^5.03)/(g1*g2^10) + (2*t^5.06)/(g1*g2^4*g3^2) + (g3^7*t^5.06)/(g1^2*g2^19) + (g1*t^5.43)/(g2^11*g3) + g2^7*g3^11*t^5.46 + g2^13*g3^5*t^5.5 + t^5.53/(g1*g2^23*g3) + g1^2*g3^12*t^5.83 + 2*g1^2*g2^6*g3^6*t^5.86 + 2*g1^2*g2^12*t^5.9 + g1*g2^3*g3^3*t^5.93 + (g3^12*t^5.93)/g2^12 + (2*g1*g2^9*t^5.97)/g3^3 + (2*g3^6*t^5.97)/g2^6 - 4*t^6. + (2*g3^3*t^6.03)/(g1*g2^9) + (g3^12*t^6.03)/(g1^2*g2^24) + (g3^6*t^6.07)/(g1^2*g2^18) + (g3^3*t^6.13)/(g1^3*g2^21) + (g1*t^6.44)/(g2^10*g3^2) + g2^8*g3^10*t^6.47 + g2^14*g3^4*t^6.5 + t^6.54/(g1*g2^22*g3^2) + g1^2*g2*g3^11*t^6.84 + 2*g1^2*g2^7*g3^5*t^6.87 + (g1*g3^8*t^6.9)/g2^2 - (g1^2*g2^13*t^6.91)/g3 + 3*g1*g2^4*g3^2*t^6.94 + (2*g3^11*t^6.94)/g2^11 + (3*g3^5*t^6.97)/g2^5 + (2*g3^8*t^7.)/(g1*g2^14) + (g2*t^7.01)/g3 - (g2^7*t^7.04)/g3^7 + (3*g3^2*t^7.04)/(g1*g2^8) + (g3^11*t^7.04)/(g1^2*g2^23) + t^7.07/(g1*g2^2*g3^4) + (2*g3^5*t^7.07)/(g1^2*g2^17) + (g3^8*t^7.1)/(g1^3*g2^26) + t^7.11/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.34)/g3^3 + (g1*t^7.44)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.44 + g2^3*g3^15*t^7.44 + g2^9*g3^9*t^7.47 - t^7.51/(g2^12*g3^6) + g2^15*g3^3*t^7.51 + (g3^12*t^7.51)/g1 + t^7.54/(g1*g2^21*g3^3) + (g2^21*t^7.54)/g3^3 + t^7.58/(g1^2*g2^30) + t^7.64/(g1^3*g2^33*g3^3) + 2*g1^2*g2^2*g3^10*t^7.84 + (g1*g3^13*t^7.87)/g2^7 + 3*g1^2*g2^8*g3^4*t^7.88 + (g1^2*g2^14*t^7.91)/g3^2 + (2*g1*g3^7*t^7.91)/g2 + 2*g1*g2^5*g3*t^7.94 + (3*g3^10*t^7.94)/g2^10 + (g3^13*t^7.97)/(g1*g2^19) + (g1*g2^11*t^7.98)/g3^5 + (5*g3^4*t^7.98)/g2^4 + (2*g2^2*t^8.01)/g3^2 + (2*g3^7*t^8.01)/(g1*g2^13) - (3*g3*t^8.04)/(g1*g2^7) + (2*g3^10*t^8.04)/(g1^2*g2^22) - (g2^8*t^8.05)/g3^8 + t^8.08/(g1*g2*g3^5) + (4*g3^4*t^8.08)/(g1^2*g2^16) + (g3^13*t^8.08)/(g1^3*g2^31) + (g3^7*t^8.11)/(g1^3*g2^25) + (g3^4*t^8.18)/(g1^4*g2^28) + (g1^2*g3^5*t^8.35)/g2^11 + (g1^2*t^8.38)/(g2^5*g3) + g1*g2^7*g3^17*t^8.38 + 2*g1*g2^13*g3^11*t^8.41 - (g1^2*g2*t^8.42)/g3^7 + (g1*t^8.45)/(g2^8*g3^4) + (2*g3^5*t^8.45)/g2^23 + t^8.48/(g2^17*g3) - (g1*g2^25*t^8.48)/g3 + g2^10*g3^8*t^8.48 + (g3^17*t^8.48)/(g1*g2^5) + g2^16*g3^2*t^8.51 + (g2*g3^11*t^8.51)/g1 - (2*t^8.52)/(g2^11*g3^7) + t^8.55/(g1*g2^20*g3^4) + (g3^5*t^8.55)/(g1^2*g2^35) - (g2^7*g3^5*t^8.55)/g1 - (g2^13*t^8.58)/(g1*g3) - t^8.62/(g1^2*g2^23*g3^7) + g1^3*g3^18*t^8.74 + 2*g1^3*g2^6*g3^12*t^8.78 + 2*g1^3*g2^12*g3^6*t^8.81 + (g1*g3^18*t^8.84)/g2^12 + 2*g1^3*g2^18*t^8.85 + 2*g1^2*g2^3*g3^9*t^8.85 + 3*g1^2*g2^9*g3^3*t^8.88 + (2*g1*g3^12*t^8.88)/g2^6 - 2*g1*g3^6*t^8.91 + (2*g1^2*g2^15*t^8.92)/g3^3 - 8*g1*g2^6*t^8.95 + (4*g3^9*t^8.95)/g2^9 + (g3^18*t^8.95)/(g1*g2^24) + (g1*g2^12*t^8.98)/g3^6 + (6*g3^3*t^8.98)/g2^3 + (3*g3^12*t^8.98)/(g1*g2^18) - (g2*t^4.01)/(g3*y) - (g2^2*t^5.01)/(g3^2*y) - t^6.05/(g1*g2^6*y) - (g1*g2*g3^5*t^6.92)/y - (2*g1*g2^7*t^6.96)/(g3*y) - (g2^4*t^7.02)/(g3^4*y) - (g3^5*t^7.02)/(g1*g2^11*y) - t^7.06/(g1*g2^5*g3*y) - (g1*g2^2*g3^4*t^7.93)/y - (g1*g2^8*t^7.96)/(g3^2*y) + (g3^7*t^7.96)/(g2^7*y) + (2*g3*t^7.99)/(g2*y) - (g2^5*t^8.03)/(g3^5*y) - (g3^4*t^8.03)/(g1*g2^10*y) + t^8.06/(g1*g2^4*g3^2*y) + (g3^7*t^8.06)/(g1^2*g2^19*y) - (g3*t^8.09)/(g1^2*g2^13*y) + (2*g1^2*g2^6*g3^6*t^8.86)/y + (g1^2*g2^12*t^8.9)/y + (g3^12*t^8.93)/(g2^12*y) + (2*g1*g2^9*t^8.97)/(g3^3*y) + (2*g3^6*t^8.97)/(g2^6*y) - (g2*t^4.01*y)/g3 - (g2^2*t^5.01*y)/g3^2 - (t^6.05*y)/(g1*g2^6) - g1*g2*g3^5*t^6.92*y - (2*g1*g2^7*t^6.96*y)/g3 - (g2^4*t^7.02*y)/g3^4 - (g3^5*t^7.02*y)/(g1*g2^11) - (t^7.06*y)/(g1*g2^5*g3) - g1*g2^2*g3^4*t^7.93*y - (g1*g2^8*t^7.96*y)/g3^2 + (g3^7*t^7.96*y)/g2^7 + (2*g3*t^7.99*y)/g2 - (g2^5*t^8.03*y)/g3^5 - (g3^4*t^8.03*y)/(g1*g2^10) + (t^8.06*y)/(g1*g2^4*g3^2) + (g3^7*t^8.06*y)/(g1^2*g2^19) - (g3*t^8.09*y)/(g1^2*g2^13) + 2*g1^2*g2^6*g3^6*t^8.86*y + g1^2*g2^12*t^8.9*y + (g3^12*t^8.93*y)/g2^12 + (2*g1*g2^9*t^8.97*y)/g3^3 + (2*g3^6*t^8.97*y)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57689 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4957 1.7262 0.8665 [X:[], M:[0.9832, 0.6815], q:[0.5141, 0.4805], qb:[0.5027, 0.4914], phi:[0.3352]] t^2.01 + t^2.04 + t^2.92 + 2*t^2.95 + 2*t^3.02 + t^3.92 + 2*t^4.02 + 2*t^4.06 + t^4.09 + 2*t^4.93 + 4*t^4.96 + 2*t^4.99 + 3*t^5.03 + 3*t^5.06 + t^5.43 + t^5.46 + t^5.5 + t^5.53 + t^5.83 + 2*t^5.87 + 2*t^5.9 + 3*t^5.93 + 4*t^5.97 - 4*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail