Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5962 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{9}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6804 | 0.9357 | 0.7272 | [M:[0.9159, 1.2522, 0.9159, 0.7478, 0.7478, 0.7101, 0.9159, 0.7478, 0.6725], q:[0.729, 0.3551], qb:[0.3551, 0.3928], phi:[0.542]] | [M:[[4], [-12], [4], [12], [12], [-10], [4], [12], [-32]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{9}$, ${ }M_{6}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{8}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }M_{7}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }M_{6}M_{9}$, ${ }M_{9}q_{2}\tilde{q}_{1}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{5}M_{9}$, ${ }M_{8}M_{9}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{9}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{8}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{5}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{5}q_{2}\tilde{q}_{2}$, ${ }M_{8}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{9}$, ${ }M_{3}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{7}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{8}$, ${ }M_{7}M_{8}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{7}q_{2}\tilde{q}_{2}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{3}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$, ${ }M_{9}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ | ${}M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | -1 | t^2.017 + 2*t^2.13 + 4*t^2.243 + 3*t^2.748 + t^3.365 + t^3.757 + t^3.87 + t^4.035 + 2*t^4.148 + 7*t^4.261 + 8*t^4.374 + 10*t^4.487 + 3*t^4.765 + 6*t^4.878 + 12*t^4.991 + t^5.383 + 7*t^5.496 + 4*t^5.609 + t^5.774 + t^5.887 - t^6. + t^6.052 + 4*t^6.113 + 2*t^6.165 + 7*t^6.278 + 12*t^6.391 + 20*t^6.504 + 20*t^6.617 + 20*t^6.73 + 3*t^6.783 + 6*t^6.896 + 18*t^7.009 + 19*t^7.122 + 29*t^7.235 + t^7.4 + 5*t^7.513 + 10*t^7.626 + 23*t^7.739 + t^7.791 + 10*t^7.852 + t^7.904 - 2*t^8.017 + t^8.069 - 7*t^8.13 + 2*t^8.182 - 3*t^8.243 + 7*t^8.296 + 10*t^8.357 + 12*t^8.409 + 25*t^8.522 + 26*t^8.635 + 23*t^8.748 + 3*t^8.8 + 37*t^8.861 + 6*t^8.913 + 35*t^8.974 - t^4.626/y - t^6.643/y - t^6.757/y - (2*t^6.87)/y + (2*t^7.148)/y + (5*t^7.261)/y + (6*t^7.374)/y + (6*t^7.487)/y + (3*t^7.765)/y + (8*t^7.878)/y + (12*t^7.991)/y + (3*t^8.383)/y + (6*t^8.496)/y + (5*t^8.609)/y - t^8.661/y - t^4.626*y - t^6.643*y - t^6.757*y - 2*t^6.87*y + 2*t^7.148*y + 5*t^7.261*y + 6*t^7.374*y + 6*t^7.487*y + 3*t^7.765*y + 8*t^7.878*y + 12*t^7.991*y + 3*t^8.383*y + 6*t^8.496*y + 5*t^8.609*y - t^8.661*y | t^2.017/g1^32 + (2*t^2.13)/g1^10 + 4*g1^12*t^2.243 + 3*g1^4*t^2.748 + g1^18*t^3.365 + t^3.757/g1^12 + g1^10*t^3.87 + t^4.035/g1^64 + (2*t^4.148)/g1^42 + (7*t^4.261)/g1^20 + 8*g1^2*t^4.374 + 10*g1^24*t^4.487 + (3*t^4.765)/g1^28 + (6*t^4.878)/g1^6 + 12*g1^16*t^4.991 + t^5.383/g1^14 + 7*g1^8*t^5.496 + 4*g1^30*t^5.609 + t^5.774/g1^44 + t^5.887/g1^22 - t^6. + t^6.052/g1^96 + 4*g1^22*t^6.113 + (2*t^6.165)/g1^74 + (7*t^6.278)/g1^52 + (12*t^6.391)/g1^30 + (20*t^6.504)/g1^8 + 20*g1^14*t^6.617 + 20*g1^36*t^6.73 + (3*t^6.783)/g1^60 + (6*t^6.896)/g1^38 + (18*t^7.009)/g1^16 + 19*g1^6*t^7.122 + 29*g1^28*t^7.235 + t^7.4/g1^46 + (5*t^7.513)/g1^24 + (10*t^7.626)/g1^2 + 23*g1^20*t^7.739 + t^7.791/g1^76 + 10*g1^42*t^7.852 + t^7.904/g1^54 - (2*t^8.017)/g1^32 + t^8.069/g1^128 - (7*t^8.13)/g1^10 + (2*t^8.182)/g1^106 - 3*g1^12*t^8.243 + (7*t^8.296)/g1^84 + 10*g1^34*t^8.357 + (12*t^8.409)/g1^62 + (25*t^8.522)/g1^40 + (26*t^8.635)/g1^18 + 23*g1^4*t^8.748 + (3*t^8.8)/g1^92 + 37*g1^26*t^8.861 + (6*t^8.913)/g1^70 + 35*g1^48*t^8.974 - t^4.626/(g1^2*y) - t^6.643/(g1^34*y) - t^6.757/(g1^12*y) - (2*g1^10*t^6.87)/y + (2*t^7.148)/(g1^42*y) + (5*t^7.261)/(g1^20*y) + (6*g1^2*t^7.374)/y + (6*g1^24*t^7.487)/y + (3*t^7.765)/(g1^28*y) + (8*t^7.878)/(g1^6*y) + (12*g1^16*t^7.991)/y + (3*t^8.383)/(g1^14*y) + (6*g1^8*t^8.496)/y + (5*g1^30*t^8.609)/y - t^8.661/(g1^66*y) - (t^4.626*y)/g1^2 - (t^6.643*y)/g1^34 - (t^6.757*y)/g1^12 - 2*g1^10*t^6.87*y + (2*t^7.148*y)/g1^42 + (5*t^7.261*y)/g1^20 + 6*g1^2*t^7.374*y + 6*g1^24*t^7.487*y + (3*t^7.765*y)/g1^28 + (8*t^7.878*y)/g1^6 + 12*g1^16*t^7.991*y + (3*t^8.383*y)/g1^14 + 6*g1^8*t^8.496*y + 5*g1^30*t^8.609*y - (t^8.661*y)/g1^66 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4454 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{7}q_{1}\tilde{q}_{1}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ | 0.6596 | 0.8946 | 0.7373 | [M:[0.9155, 1.2536, 0.9155, 0.7464, 0.7464, 0.7113, 0.9155, 0.7464], q:[0.7289, 0.3556], qb:[0.3556, 0.3908], phi:[0.5423]] | 2*t^2.134 + 4*t^2.239 + 3*t^2.746 + t^3.359 + t^3.761 + t^3.866 + t^3.972 + 3*t^4.268 + 8*t^4.373 + 10*t^4.479 + 6*t^4.88 + 12*t^4.986 + 7*t^5.493 + 4*t^5.598 - t^6. - t^4.627/y - t^4.627*y | detail |