Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5959 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_2M_8$ + $ M_9\phi_1q_2^2$ | 0.6799 | 0.9326 | 0.7291 | [X:[], M:[0.9165, 1.2506, 0.9165, 0.7494, 0.7088, 0.7088, 0.9165, 0.7494, 0.7494], q:[0.7291, 0.3544], qb:[0.3544, 0.395], phi:[0.5418]] | [X:[], M:[[4], [-12], [4], [12], [-10], [-10], [4], [12], [12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_4$, $ M_8$, $ M_9$, $ q_2\tilde{q}_2$, $ M_1$, $ M_3$, $ M_7$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_4M_5$, $ M_4M_6$, $ M_5M_8$, $ M_6M_8$, $ M_5M_9$, $ M_6M_9$, $ M_4q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_9q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4M_8$, $ M_8^2$, $ M_4M_9$, $ M_8M_9$, $ M_9^2$, $ M_4q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ M_9q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_5$, $ M_3M_5$, $ M_1M_6$, $ M_3M_6$, $ M_5M_7$, $ M_6M_7$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_1M_4$, $ M_3M_4$, $ M_4M_7$, $ M_1M_8$, $ M_3M_8$, $ M_7M_8$, $ M_1M_9$, $ M_3M_9$, $ M_7M_9$, $ \phi_1q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_3$, $ M_3^2$, $ M_1M_7$, $ M_3M_7$, $ M_7^2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_8q_1\tilde{q}_2$, $ M_9q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_5\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ | $M_4\phi_1\tilde{q}_1^2$, $ M_8\phi_1\tilde{q}_1^2$, $ M_9\phi_1\tilde{q}_1^2$ | -3 | 3*t^2.13 + 4*t^2.25 + 3*t^2.75 + t^3.37 + t^3.75 + t^4. + 6*t^4.25 + 12*t^4.37 + 10*t^4.5 + 9*t^4.88 + 12*t^5. + 8*t^5.5 + 4*t^5.62 + t^5.88 - 3*t^6. + 3*t^6.12 + 4*t^6.24 + 10*t^6.38 + 22*t^6.5 + 27*t^6.62 + 23*t^6.74 + 15*t^7. + 31*t^7.12 + 28*t^7.25 + t^7.37 - 2*t^7.5 + 13*t^7.63 + 27*t^7.75 + 10*t^7.87 + t^7.99 - 17*t^8.13 - 5*t^8.25 + 12*t^8.37 + 10*t^8.49 + 15*t^8.51 + 28*t^8.63 + 24*t^8.75 + 54*t^8.87 + 47*t^8.99 - t^4.63/y - (2*t^6.75)/y - (2*t^6.87)/y + (3*t^7.25)/y + (10*t^7.37)/y + (6*t^7.5)/y + (11*t^7.88)/y + (12*t^8.)/y + (2*t^8.38)/y + (8*t^8.5)/y + (4*t^8.62)/y - t^4.63*y - 2*t^6.75*y - 2*t^6.87*y + 3*t^7.25*y + 10*t^7.37*y + 6*t^7.5*y + 11*t^7.88*y + 12*t^8.*y + 2*t^8.38*y + 8*t^8.5*y + 4*t^8.62*y | (3*t^2.13)/g1^10 + 4*g1^12*t^2.25 + 3*g1^4*t^2.75 + g1^18*t^3.37 + t^3.75/g1^12 + g1^32*t^4. + (6*t^4.25)/g1^20 + 12*g1^2*t^4.37 + 10*g1^24*t^4.5 + (9*t^4.88)/g1^6 + 12*g1^16*t^5. + 8*g1^8*t^5.5 + 4*g1^30*t^5.62 + t^5.88/g1^22 - 3*t^6. + 3*g1^22*t^6.12 + 4*g1^44*t^6.24 + (10*t^6.38)/g1^30 + (22*t^6.5)/g1^8 + 27*g1^14*t^6.62 + 23*g1^36*t^6.74 + (15*t^7.)/g1^16 + 31*g1^6*t^7.12 + 28*g1^28*t^7.25 + g1^50*t^7.37 - (2*t^7.5)/g1^24 + (13*t^7.63)/g1^2 + 27*g1^20*t^7.75 + 10*g1^42*t^7.87 + g1^64*t^7.99 - (17*t^8.13)/g1^10 - 5*g1^12*t^8.25 + 12*g1^34*t^8.37 + 10*g1^56*t^8.49 + (15*t^8.51)/g1^40 + (28*t^8.63)/g1^18 + 24*g1^4*t^8.75 + 54*g1^26*t^8.87 + 47*g1^48*t^8.99 - t^4.63/(g1^2*y) - (2*t^6.75)/(g1^12*y) - (2*g1^10*t^6.87)/y + (3*t^7.25)/(g1^20*y) + (10*g1^2*t^7.37)/y + (6*g1^24*t^7.5)/y + (11*t^7.88)/(g1^6*y) + (12*g1^16*t^8.)/y + (2*t^8.38)/(g1^14*y) + (8*g1^8*t^8.5)/y + (4*g1^30*t^8.62)/y - (t^4.63*y)/g1^2 - (2*t^6.75*y)/g1^12 - 2*g1^10*t^6.87*y + (3*t^7.25*y)/g1^20 + 10*g1^2*t^7.37*y + 6*g1^24*t^7.5*y + (11*t^7.88*y)/g1^6 + 12*g1^16*t^8.*y + (2*t^8.38*y)/g1^14 + 8*g1^8*t^8.5*y + 4*g1^30*t^8.62*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4453 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_3\phi_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_7q_1\tilde{q}_1$ + $ M_2M_8$ | 0.661 | 0.8975 | 0.7365 | [X:[], M:[0.9187, 1.2438, 0.9187, 0.7562, 0.7032, 0.7032, 0.9187, 0.7562], q:[0.7297, 0.3516], qb:[0.3516, 0.4046], phi:[0.5406]] | 3*t^2.11 + 3*t^2.27 + 3*t^2.76 + t^3.4 + 2*t^3.73 + t^4.05 + 6*t^4.22 + 9*t^4.38 + 6*t^4.54 + 9*t^4.87 + 9*t^5.02 + 8*t^5.51 + 3*t^5.67 + 4*t^5.84 - t^6. - t^4.62/y - t^4.62*y | detail |