Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59572 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4758 | 1.6886 | 0.874 | [X:[], M:[0.9888, 0.9776], q:[0.4722, 0.5169], qb:[0.5054, 0.4831], phi:[0.3371]] | [X:[], M:[[-3, 3], [-6, 6]], q:[[-12, 6], [0, -6]], qb:[[6, 0], [0, 6]], phi:[[1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | t^2.02 + t^2.87 + 2*t^2.93 + t^2.97 + t^3. + t^3.88 + t^3.94 + t^4.01 + t^4.04 + t^4.08 + 2*t^4.89 + 3*t^4.96 + t^4.99 + 2*t^5.02 + t^5.09 + t^5.4 + t^5.43 + t^5.49 + t^5.53 + t^5.73 + 2*t^5.8 + t^5.83 + 3*t^5.87 + 3*t^5.9 + 2*t^5.93 + 2*t^5.97 - 3*t^6. + t^6.03 + t^6.1 - t^6.13 + t^6.41 + t^6.44 + t^6.5 + t^6.54 + t^6.74 + 3*t^6.81 + t^6.84 + 3*t^6.88 + 3*t^6.91 + 3*t^6.94 + 4*t^6.98 + t^7.01 + 3*t^7.04 + t^7.11 - t^7.15 + t^7.28 + t^7.38 - t^7.41 + 2*t^7.42 + t^7.45 + t^7.52 + t^7.55 + t^7.58 + t^7.69 + 3*t^7.75 + 6*t^7.82 + t^7.85 + 8*t^7.89 + 3*t^7.92 + 6*t^7.96 + 2*t^7.99 + t^8.06 + t^8.09 + t^8.12 - t^8.16 + t^8.26 + t^8.29 + t^8.33 + 3*t^8.36 + t^8.39 + t^8.4 + 2*t^8.43 + 2*t^8.46 - t^8.49 + t^8.5 - t^8.56 - t^8.63 + t^8.66 + t^8.7 + 3*t^8.73 + 4*t^8.77 + 4*t^8.8 + 8*t^8.83 - t^8.87 + 8*t^8.9 - 4*t^8.93 + 3*t^8.97 - t^4.01/y - t^5.02/y - t^6.03/y - t^6.88/y - (2*t^6.94)/y - t^6.98/y - t^7.01/y - t^7.04/y + t^7.99/y - t^8.06/y + (2*t^8.8)/y + t^8.83/y + (2*t^8.87)/y + t^8.9/y + (2*t^8.93)/y - t^8.97/y - t^4.01*y - t^5.02*y - t^6.03*y - t^6.88*y - 2*t^6.94*y - t^6.98*y - t^7.01*y - t^7.04*y + t^7.99*y - t^8.06*y + 2*t^8.8*y + t^8.83*y + 2*t^8.87*y + t^8.9*y + 2*t^8.93*y - t^8.97*y | (g1^2*t^2.02)/g2^2 + (g2^12*t^2.87)/g1^12 + (2*g2^6*t^2.93)/g1^6 + (g2^3*t^2.97)/g1^3 + t^3. + (g2^11*t^3.88)/g1^11 + (g2^5*t^3.94)/g1^5 + (g1*t^4.01)/g2 + (g1^4*t^4.04)/g2^4 + (g1^7*t^4.08)/g2^7 + (2*g2^10*t^4.89)/g1^10 + (3*g2^4*t^4.96)/g1^4 + (g2*t^4.99)/g1 + (2*g1^2*t^5.02)/g2^2 + (g1^8*t^5.09)/g2^8 + (g2^5*t^5.4)/g1^23 + g1^7*g2^11*t^5.43 + g1^13*g2^5*t^5.49 + t^5.53/(g1^11*g2^7) + (g2^24*t^5.73)/g1^24 + (2*g2^18*t^5.8)/g1^18 + (g2^15*t^5.83)/g1^15 + (3*g2^12*t^5.87)/g1^12 + (3*g2^9*t^5.9)/g1^9 + (2*g2^6*t^5.93)/g1^6 + (2*g2^3*t^5.97)/g1^3 - 3*t^6. + (g1^3*t^6.03)/g2^3 + (g1^9*t^6.1)/g2^9 - (g1^12*t^6.13)/g2^12 + (g2^4*t^6.41)/g1^22 + g1^8*g2^10*t^6.44 + g1^14*g2^4*t^6.5 + t^6.54/(g1^10*g2^8) + (g2^23*t^6.74)/g1^23 + (3*g2^17*t^6.81)/g1^17 + (g2^14*t^6.84)/g1^14 + (3*g2^11*t^6.88)/g1^11 + (3*g2^8*t^6.91)/g1^8 + (3*g2^5*t^6.94)/g1^5 + (4*g2^2*t^6.98)/g1^2 + (g1*t^7.01)/g2 + (3*g1^4*t^7.04)/g2^4 + (g1^10*t^7.11)/g2^10 - (g1^13*t^7.15)/g2^13 + (g2^15*t^7.28)/g1^33 + g1^3*g2^15*t^7.38 - g1^6*g2^12*t^7.41 + (2*g2^3*t^7.42)/g1^21 - t^7.45/g1^18 + 2*g1^9*g2^9*t^7.45 - t^7.52/(g1^12*g2^6) + 2*g1^15*g2^3*t^7.52 - g1^18*t^7.55 + (2*t^7.55)/(g1^9*g2^9) + (g1^21*t^7.58)/g2^3 + (g1^3*t^7.69)/g2^21 + (3*g2^22*t^7.75)/g1^22 + (6*g2^16*t^7.82)/g1^16 + (g2^13*t^7.85)/g1^13 + (8*g2^10*t^7.89)/g1^10 + (3*g2^7*t^7.92)/g1^7 + (6*g2^4*t^7.96)/g1^4 + (2*g2*t^7.99)/g1 + (g1^5*t^8.06)/g2^5 + (g1^8*t^8.09)/g2^8 + (g1^11*t^8.12)/g2^11 - (g1^14*t^8.16)/g2^14 + (g2^17*t^8.26)/g1^35 + (g2^23*t^8.29)/g1^5 + (g2^11*t^8.33)/g1^29 + (g2^8*t^8.36)/g1^26 + 2*g1*g2^17*t^8.36 + g1^4*g2^14*t^8.39 + (g2^5*t^8.4)/g1^23 + (g2^2*t^8.43)/g1^20 + g1^7*g2^11*t^8.43 + 2*g1^10*g2^8*t^8.46 - g1^13*g2^5*t^8.49 + t^8.5/(g1^14*g2^4) - t^8.53/(g1^11*g2^7) + g1^16*g2^2*t^8.53 + t^8.56/(g1^8*g2^10) - (2*g1^19*t^8.56)/g2 - t^8.6/(g1^5*g2^13) + (g2^36*t^8.6)/g1^36 - (g1^25*t^8.63)/g2^7 - (g1*t^8.66)/g2^19 + (2*g2^30*t^8.66)/g1^30 + (g2^27*t^8.7)/g1^27 + (3*g2^24*t^8.73)/g1^24 + (4*g2^21*t^8.77)/g1^21 + (4*g2^18*t^8.8)/g1^18 + (8*g2^15*t^8.83)/g1^15 - (g2^12*t^8.87)/g1^12 + (8*g2^9*t^8.9)/g1^9 - (4*g2^6*t^8.93)/g1^6 + (3*g2^3*t^8.97)/g1^3 - (g1*t^4.01)/(g2*y) - (g1^2*t^5.02)/(g2^2*y) - (g1^3*t^6.03)/(g2^3*y) - (g2^11*t^6.88)/(g1^11*y) - (2*g2^5*t^6.94)/(g1^5*y) - (g2^2*t^6.98)/(g1^2*y) - (g1*t^7.01)/(g2*y) - (g1^4*t^7.04)/(g2^4*y) + (g2*t^7.99)/(g1*y) - (g1^5*t^8.06)/(g2^5*y) + (2*g2^18*t^8.8)/(g1^18*y) + (g2^15*t^8.83)/(g1^15*y) + (2*g2^12*t^8.87)/(g1^12*y) + (g2^9*t^8.9)/(g1^9*y) + (2*g2^6*t^8.93)/(g1^6*y) - (g2^3*t^8.97)/(g1^3*y) - (g1*t^4.01*y)/g2 - (g1^2*t^5.02*y)/g2^2 - (g1^3*t^6.03*y)/g2^3 - (g2^11*t^6.88*y)/g1^11 - (2*g2^5*t^6.94*y)/g1^5 - (g2^2*t^6.98*y)/g1^2 - (g1*t^7.01*y)/g2 - (g1^4*t^7.04*y)/g2^4 + (g2*t^7.99*y)/g1 - (g1^5*t^8.06*y)/g2^5 + (2*g2^18*t^8.8*y)/g1^18 + (g2^15*t^8.83*y)/g1^15 + (2*g2^12*t^8.87*y)/g1^12 + (g2^9*t^8.9*y)/g1^9 + (2*g2^6*t^8.93*y)/g1^6 - (g2^3*t^8.97*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57486 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4743 | 1.6839 | 0.8755 | [X:[], M:[0.9952], q:[0.4879, 0.5073], qb:[0.5024, 0.4927], phi:[0.3349]] | t^2.01 + t^2.94 + t^2.97 + t^2.99 + t^3. + t^3.03 + t^3.95 + t^3.98 + t^4. + t^4.02 + t^4.03 + 2*t^4.95 + 2*t^4.98 + t^5. + 2*t^5.01 + 2*t^5.04 + t^5.45 + t^5.47 + t^5.5 + t^5.51 + t^5.88 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + 2*t^5.97 + 2*t^5.99 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y | detail |