Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5957 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2M_7$ + $ M_8\phi_1q_2^2$ + $ M_9q_1\tilde{q}_2$ 0.6712 0.9166 0.7323 [X:[], M:[0.9266, 1.2201, 1.0734, 0.7799, 0.6834, 0.6834, 0.7799, 0.7799, 0.8301], q:[0.7317, 0.3417], qb:[0.3417, 0.4382], phi:[0.5367]] [X:[], M:[[4], [-12], [-4], [12], [-10], [-10], [12], [12], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ M_4$, $ M_7$, $ M_8$, $ q_2\tilde{q}_2$, $ M_9$, $ M_3$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ M_4M_5$, $ M_4M_6$, $ M_5M_7$, $ M_6M_7$, $ M_5M_8$, $ M_6M_8$, $ M_4q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_8q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_5M_9$, $ M_6M_9$, $ M_9q_2\tilde{q}_1$, $ M_4^2$, $ M_4M_7$, $ M_7^2$, $ M_4M_8$, $ M_7M_8$, $ M_8^2$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_2$, $ M_8q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_4M_9$, $ M_7M_9$, $ M_8M_9$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_9q_2\tilde{q}_2$, $ M_9^2$, $ M_3M_5$, $ M_3M_6$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_5q_1\tilde{q}_1$, $ M_6q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_3M_4$, $ M_3M_7$, $ M_3M_8$, $ M_4\phi_1^2$, $ M_7\phi_1^2$, $ M_8\phi_1^2$, $ M_4q_1\tilde{q}_1$, $ M_7q_1\tilde{q}_1$, $ M_8q_1\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_9$, $ M_9\phi_1^2$, $ M_9q_1\tilde{q}_1$, $ M_5\phi_1\tilde{q}_1^2$, $ M_6\phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $M_4\phi_1\tilde{q}_1^2$, $ M_7\phi_1\tilde{q}_1^2$, $ M_8\phi_1\tilde{q}_1^2$ -3 3*t^2.05 + 4*t^2.34 + t^2.49 + 3*t^3.22 + t^3.66 + 6*t^4.1 + t^4.24 + 12*t^4.39 + 3*t^4.54 + 10*t^4.68 + 4*t^4.83 + t^4.98 + 9*t^5.27 + 11*t^5.56 + 4*t^5.71 - 3*t^6. + 11*t^6.15 + 25*t^6.44 + 4*t^6.58 + 6*t^6.59 + 28*t^6.73 + 12*t^6.88 + 19*t^7.02 + 3*t^7.03 + 4*t^7.17 + 20*t^7.32 + t^7.46 + t^7.47 + 25*t^7.61 + 9*t^7.76 + 21*t^7.9 - 6*t^8.05 + 19*t^8.2 - 21*t^8.34 + t^8.48 + 40*t^8.49 + 11*t^8.64 + 54*t^8.78 + 10*t^8.92 + 20*t^8.93 - t^4.61/y - (2*t^6.66)/y - (2*t^6.95)/y + (2*t^7.1)/y + (13*t^7.39)/y + (3*t^7.54)/y + (6*t^7.68)/y + (3*t^7.83)/y + t^8.12/y + (11*t^8.27)/y + (14*t^8.56)/y + (3*t^8.71)/y - t^4.61*y - 2*t^6.66*y - 2*t^6.95*y + 2*t^7.1*y + 13*t^7.39*y + 3*t^7.54*y + 6*t^7.68*y + 3*t^7.83*y + t^8.12*y + 11*t^8.27*y + 14*t^8.56*y + 3*t^8.71*y (3*t^2.05)/g1^10 + 4*g1^12*t^2.34 + t^2.49/g1^18 + (3*t^3.22)/g1^4 + t^3.66/g1^12 + (6*t^4.1)/g1^20 + g1^32*t^4.24 + 12*g1^2*t^4.39 + (3*t^4.54)/g1^28 + 10*g1^24*t^4.68 + (4*t^4.83)/g1^6 + t^4.98/g1^36 + (9*t^5.27)/g1^14 + 11*g1^8*t^5.56 + (4*t^5.71)/g1^22 - 3*t^6. + (11*t^6.15)/g1^30 + (25*t^6.44)/g1^8 + 4*g1^44*t^6.58 + (6*t^6.59)/g1^38 + 28*g1^14*t^6.73 + (12*t^6.88)/g1^16 + 19*g1^36*t^7.02 + (3*t^7.03)/g1^46 + 4*g1^6*t^7.17 + (20*t^7.32)/g1^24 + g1^28*t^7.46 + t^7.47/g1^54 + (25*t^7.61)/g1^2 + (9*t^7.76)/g1^32 + 21*g1^20*t^7.9 - (6*t^8.05)/g1^10 + (19*t^8.2)/g1^40 - 21*g1^12*t^8.34 + g1^64*t^8.48 + (40*t^8.49)/g1^18 + (11*t^8.64)/g1^48 + 54*g1^4*t^8.78 + 10*g1^56*t^8.92 + (20*t^8.93)/g1^26 - t^4.61/(g1^2*y) - (2*t^6.66)/(g1^12*y) - (2*g1^10*t^6.95)/y + (2*t^7.1)/(g1^20*y) + (13*g1^2*t^7.39)/y + (3*t^7.54)/(g1^28*y) + (6*g1^24*t^7.68)/y + (3*t^7.83)/(g1^6*y) + (g1^16*t^8.12)/y + (11*t^8.27)/(g1^14*y) + (14*g1^8*t^8.56)/y + (3*t^8.71)/(g1^22*y) - (t^4.61*y)/g1^2 - (2*t^6.66*y)/g1^12 - 2*g1^10*t^6.95*y + (2*t^7.1*y)/g1^20 + 13*g1^2*t^7.39*y + (3*t^7.54*y)/g1^28 + 6*g1^24*t^7.68*y + (3*t^7.83*y)/g1^6 + g1^16*t^8.12*y + (11*t^8.27*y)/g1^14 + 14*g1^8*t^8.56*y + (3*t^8.71*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4450 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_1M_3$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2M_7$ + $ M_8\phi_1q_2^2$ 0.6575 0.8935 0.7359 [X:[], M:[0.9211, 1.2368, 1.0789, 0.7632, 0.6973, 0.6973, 0.7632, 0.7632], q:[0.7303, 0.3487], qb:[0.3487, 0.4145], phi:[0.5395]] 3*t^2.09 + 4*t^2.29 + 3*t^3.24 + t^3.43 + t^3.71 + t^4.11 + 6*t^4.18 + 12*t^4.38 + 10*t^4.58 + 9*t^5.33 + 14*t^5.53 + 4*t^5.72 + t^5.8 - 3*t^6. - t^4.62/y - t^4.62*y detail