Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59502 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.4699 | 1.6729 | 0.8786 | [X:[1.3576], M:[0.6921, 0.9139], q:[0.4978, 0.4845], qb:[0.5022, 0.5883], phi:[0.3212]] | [X:[[0, 2]], M:[[3, -6], [-3, 1]], q:[[2, -1], [-1, 6]], qb:[[-2, 1], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$ | ${}$ | -2 | t^2.08 + t^2.74 + t^2.89 + t^2.96 + t^3. + t^3.22 + t^3.96 + t^4.07 + t^4.15 + t^4.18 + t^4.22 + t^4.82 + t^4.89 + t^4.93 + t^4.97 + t^5.04 + t^5.08 + t^5.15 + t^5.19 + t^5.29 + t^5.36 + t^5.4 + t^5.48 + t^5.63 + t^5.7 + t^5.74 + t^5.78 + t^5.85 + t^5.89 + t^5.92 + t^5.96 - 2*t^6. + t^6.11 + t^6.15 + t^6.18 + t^6.22 + t^6.23 + t^6.3 + t^6.33 + t^6.37 + t^6.44 + t^6.71 + t^6.81 + t^6.85 + t^6.89 + t^6.92 + 2*t^6.96 + t^7.03 + t^7.04 + 2*t^7.07 + 2*t^7.11 + t^7.14 + t^7.15 + 2*t^7.18 + t^7.22 + t^7.25 + t^7.26 + 2*t^7.29 + t^7.33 + 2*t^7.37 + t^7.4 + t^7.41 + t^7.44 + t^7.48 + t^7.56 + t^7.63 + t^7.67 + t^7.71 + t^7.78 + t^7.82 + t^7.85 + t^7.86 + 2*t^7.89 + 3*t^7.93 + 2*t^8.04 - t^8.08 + 2*t^8.11 + 3*t^8.15 + 2*t^8.19 + 2*t^8.23 + 2*t^8.25 + 2*t^8.29 + t^8.3 + t^8.32 + 3*t^8.36 + 2*t^8.37 + 2*t^8.4 + 2*t^8.44 + t^8.51 + t^8.58 + t^8.59 + t^8.62 + t^8.63 + t^8.66 + t^8.67 + t^8.7 - 2*t^8.74 + t^8.81 + 2*t^8.85 + t^8.88 + t^8.89 + t^8.92 - 2*t^8.96 + t^8.97 + t^8.89/y^2 - t^3.96/y - t^4.93/y - t^6.04/y - t^6.71/y - t^6.85/y - t^6.92/y - t^6.96/y - t^7./y - t^7.18/y - t^7.67/y - t^7.93/y + t^7.97/y + t^8.04/y + t^8.08/y - t^8.12/y - t^8.15/y + t^8.29/y + t^8.63/y + t^8.7/y + t^8.74/y - t^8.78/y + t^8.85/y - t^8.93/y + (2*t^8.96)/y - t^3.96*y - t^4.93*y - t^6.04*y - t^6.71*y - t^6.85*y - t^6.92*y - t^6.96*y - t^7.*y - t^7.18*y - t^7.67*y - t^7.93*y + t^7.97*y + t^8.04*y + t^8.08*y - t^8.12*y - t^8.15*y + t^8.29*y + t^8.63*y + t^8.7*y + t^8.74*y - t^8.78*y + t^8.85*y - t^8.93*y + 2*t^8.96*y + t^8.89*y^2 | (g1^3*t^2.08)/g2^6 + (g2*t^2.74)/g1^3 + t^2.89/g2^3 + (g2^7*t^2.96)/g1^3 + t^3. + g2^6*t^3.22 + t^3.96/g2 + g2^2*t^4.07 + (g1^6*t^4.15)/g2^12 + g2^5*t^4.18 + (g1^3*t^4.22)/g2^2 + t^4.82/g2^5 + (g2^5*t^4.89)/g1^3 + t^4.93/g2^2 + (g1^3*t^4.97)/g2^9 + g2*t^5.04 + (g1^3*t^5.08)/g2^6 + g2^4*t^5.15 + (g1^3*t^5.19)/g2^3 + g1^3*t^5.29 + g2^10*t^5.36 + g1^3*g2^3*t^5.4 + (g2^2*t^5.48)/g1^6 + t^5.63/(g1^3*g2^2) + (g2^8*t^5.7)/g1^6 + (g2*t^5.74)/g1^3 + t^5.78/g2^6 + (g2^4*t^5.85)/g1^3 + t^5.89/g2^3 + (g2^14*t^5.92)/g1^6 + (g2^7*t^5.96)/g1^3 - 2*t^6. + g2^3*t^6.11 + (g1^3*t^6.15)/g2^4 + (g2^13*t^6.18)/g1^3 + g2^6*t^6.22 + (g1^9*t^6.23)/g2^18 + (g1^6*t^6.3)/g2^8 + g2^9*t^6.33 + g1^3*g2^2*t^6.37 + g2^12*t^6.44 + t^6.71/g1^3 + (g2^3*t^6.81)/g1^3 + t^6.85/g2^4 + (g1^3*t^6.89)/g2^11 + (g2^6*t^6.92)/g1^3 + (2*t^6.96)/g2 + (g2^9*t^7.03)/g1^3 + (g1^6*t^7.04)/g2^15 + 2*g2^2*t^7.07 + (2*g1^3*t^7.11)/g2^5 + (g2^12*t^7.14)/g1^3 + (g1^6*t^7.15)/g2^12 + 2*g2^5*t^7.18 + (g1^3*t^7.22)/g2^2 + (g2^15*t^7.25)/g1^3 + (g1^6*t^7.26)/g2^9 + 2*g2^8*t^7.29 + g1^3*g2*t^7.33 + (2*g1^6*t^7.37)/g2^6 + g2^11*t^7.4 + t^7.41/g1^6 + g1^3*g2^4*t^7.44 + (g1^6*t^7.48)/g2^3 + t^7.56/(g1^3*g2^4) + (g2^6*t^7.63)/g1^6 + t^7.67/(g1^3*g2) + t^7.71/g2^8 + (g2^2*t^7.78)/g1^3 + t^7.82/g2^5 + (g2^12*t^7.85)/g1^6 + (g1^3*t^7.86)/g2^12 + (2*g2^5*t^7.89)/g1^3 + (3*t^7.93)/g2^2 + 2*g2*t^8.04 - (g1^3*t^8.08)/g2^6 + (2*g2^11*t^8.11)/g1^3 + 3*g2^4*t^8.15 + (2*g1^3*t^8.19)/g2^3 + (g1^6*t^8.23)/g2^10 + (g2^3*t^8.23)/g1^9 + 2*g2^7*t^8.25 + 2*g1^3*t^8.29 + (g1^12*t^8.3)/g2^24 + (g2^17*t^8.32)/g1^3 + 3*g2^10*t^8.36 + (g1^9*t^8.37)/g2^14 + t^8.37/(g1^6*g2) + 2*g1^3*g2^3*t^8.4 + (g1^6*t^8.44)/g2^4 + (g2^9*t^8.44)/g1^9 + g1^3*g2^6*t^8.51 + g2^16*t^8.58 + (g2^5*t^8.59)/g1^6 + g1^3*g2^9*t^8.62 + t^8.63/(g1^3*g2^2) + (g2^15*t^8.66)/g1^9 + t^8.67/g2^9 + (g2^8*t^8.7)/g1^6 - (2*g2*t^8.74)/g1^3 + (g2^11*t^8.81)/g1^6 + (2*g2^4*t^8.85)/g1^3 + (g2^21*t^8.88)/g1^9 + t^8.89/g2^3 + (g2^14*t^8.92)/g1^6 - (2*g2^7*t^8.96)/g1^3 + (g1^6*t^8.97)/g2^17 + t^8.89/(g2^3*y^2) - t^3.96/(g2*y) - t^4.93/(g2^2*y) - (g1^3*t^6.04)/(g2^7*y) - t^6.71/(g1^3*y) - t^6.85/(g2^4*y) - (g2^6*t^6.92)/(g1^3*y) - t^6.96/(g2*y) - (g1^3*t^7.)/(g2^8*y) - (g2^5*t^7.18)/y - t^7.67/(g1^3*g2*y) - t^7.93/(g2^2*y) + (g1^3*t^7.97)/(g2^9*y) + (g2*t^8.04)/y + (g1^3*t^8.08)/(g2^6*y) - (g1^6*t^8.12)/(g2^13*y) - (g2^4*t^8.15)/y + (g1^3*t^8.29)/y + t^8.63/(g1^3*g2^2*y) + (g2^8*t^8.7)/(g1^6*y) + (g2*t^8.74)/(g1^3*y) - t^8.78/(g2^6*y) + (g2^4*t^8.85)/(g1^3*y) - (g1^3*t^8.93)/(g2^10*y) + (2*g2^7*t^8.96)/(g1^3*y) - (t^3.96*y)/g2 - (t^4.93*y)/g2^2 - (g1^3*t^6.04*y)/g2^7 - (t^6.71*y)/g1^3 - (t^6.85*y)/g2^4 - (g2^6*t^6.92*y)/g1^3 - (t^6.96*y)/g2 - (g1^3*t^7.*y)/g2^8 - g2^5*t^7.18*y - (t^7.67*y)/(g1^3*g2) - (t^7.93*y)/g2^2 + (g1^3*t^7.97*y)/g2^9 + g2*t^8.04*y + (g1^3*t^8.08*y)/g2^6 - (g1^6*t^8.12*y)/g2^13 - g2^4*t^8.15*y + g1^3*t^8.29*y + (t^8.63*y)/(g1^3*g2^2) + (g2^8*t^8.7*y)/g1^6 + (g2*t^8.74*y)/g1^3 - (t^8.78*y)/g2^6 + (g2^4*t^8.85*y)/g1^3 - (g1^3*t^8.93*y)/g2^10 + (2*g2^7*t^8.96*y)/g1^3 + (t^8.89*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57417 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4634 | 1.6643 | 0.8793 | [X:[1.3522], M:[0.6722], q:[0.4764, 0.4803], qb:[0.5236, 0.5763], phi:[0.3239]] | t^2.017 + t^2.915 + t^3. + t^3.012 + t^3.158 + t^3.17 + t^3.972 + t^4.033 + t^4.057 + t^4.13 + t^4.141 + t^4.932 + t^4.943 + t^4.955 + t^5.017 + t^5.028 + t^5.102 + t^5.113 + t^5.175 + t^5.186 + t^5.271 + t^5.283 + t^5.83 + t^5.915 + t^5.927 - 2*t^6. - t^3.972/y - t^4.943/y - t^5.988/y - t^3.972*y - t^4.943*y - t^5.988*y | detail |