Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59494 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4302 1.6233 0.8811 [X:[1.3497], M:[0.8129], q:[0.6043, 0.4662], qb:[0.3957, 0.5828], phi:[0.3252]] [X:[[12]], M:[[-15]], q:[[-5], [16]], qb:[[5], [20]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -1 t^2.44 + t^2.59 + t^2.93 + t^3. + t^3.15 + t^3.56 + t^3.98 + t^4.05 + t^4.12 + 2*t^4.54 + t^4.88 + t^4.95 + t^5.02 + 2*t^5.1 + t^5.17 + t^5.37 + 2*t^5.51 + 2*t^5.59 + t^5.66 + t^5.73 + t^5.85 + t^5.93 - t^6. + 2*t^6.07 + 2*t^6.15 + t^6.29 - t^6.41 + 3*t^6.49 + 2*t^6.56 + 2*t^6.63 + 2*t^6.71 + t^6.9 + 2*t^6.98 + 3*t^7.05 + 5*t^7.12 + t^7.2 + t^7.27 + t^7.32 - t^7.39 + 2*t^7.46 + 3*t^7.54 + 2*t^7.61 + 5*t^7.68 + t^7.76 + t^7.8 + t^7.88 + 2*t^7.95 + t^8.02 + 7*t^8.1 + 3*t^8.17 + 4*t^8.24 + t^8.29 + t^8.32 - t^8.44 + 3*t^8.51 - t^8.59 + 7*t^8.66 + 3*t^8.73 + t^8.78 + t^8.81 + t^8.88 + 2*t^8.93 + t^8.93/y^2 - t^3.98/y - t^4.95/y - t^6.41/y - t^6.56/y - t^6.9/y - t^6.98/y - t^7.12/y - t^7.39/y - t^7.54/y - t^7.88/y - t^7.95/y + t^8.02/y - t^8.1/y + t^8.37/y + t^8.44/y + (2*t^8.59)/y + t^8.73/y - t^8.85/y - t^3.98*y - t^4.95*y - t^6.41*y - t^6.56*y - t^6.9*y - t^6.98*y - t^7.12*y - t^7.39*y - t^7.54*y - t^7.88*y - t^7.95*y + t^8.02*y - t^8.1*y + t^8.37*y + t^8.44*y + 2*t^8.59*y + t^8.73*y - t^8.85*y + t^8.93*y^2 t^2.44/g1^15 + g1^21*t^2.59 + t^2.93/g1^18 + t^3. + g1^36*t^3.15 + g1^15*t^3.56 + t^3.98/g1^6 + g1^12*t^4.05 + g1^30*t^4.12 + 2*g1^9*t^4.54 + t^4.88/g1^30 + t^4.95/g1^12 + g1^6*t^5.02 + 2*g1^24*t^5.1 + g1^42*t^5.17 + t^5.37/g1^33 + 2*g1^3*t^5.51 + 2*g1^21*t^5.59 + g1^39*t^5.66 + g1^57*t^5.73 + t^5.85/g1^36 + t^5.93/g1^18 - t^6. + 2*g1^18*t^6.07 + 2*g1^36*t^6.15 + g1^72*t^6.29 - t^6.41/g1^21 + (3*t^6.49)/g1^3 + 2*g1^15*t^6.56 + 2*g1^33*t^6.63 + 2*g1^51*t^6.71 + t^6.9/g1^24 + (2*t^6.98)/g1^6 + 3*g1^12*t^7.05 + 5*g1^30*t^7.12 + g1^48*t^7.2 + g1^66*t^7.27 + t^7.32/g1^45 - t^7.39/g1^27 + (2*t^7.46)/g1^9 + 3*g1^9*t^7.54 + 2*g1^27*t^7.61 + 5*g1^45*t^7.68 + g1^63*t^7.76 + t^7.8/g1^48 + t^7.88/g1^30 + (2*t^7.95)/g1^12 + g1^6*t^8.02 + 7*g1^24*t^8.1 + 3*g1^42*t^8.17 + 4*g1^60*t^8.24 + t^8.29/g1^51 + g1^78*t^8.32 - t^8.44/g1^15 + 3*g1^3*t^8.51 - g1^21*t^8.59 + 7*g1^39*t^8.66 + 3*g1^57*t^8.73 + t^8.78/g1^54 + g1^75*t^8.81 + g1^93*t^8.88 + (2*t^8.93)/g1^18 + t^8.93/(g1^18*y^2) - t^3.98/(g1^6*y) - t^4.95/(g1^12*y) - t^6.41/(g1^21*y) - (g1^15*t^6.56)/y - t^6.9/(g1^24*y) - t^6.98/(g1^6*y) - (g1^30*t^7.12)/y - t^7.39/(g1^27*y) - (g1^9*t^7.54)/y - t^7.88/(g1^30*y) - t^7.95/(g1^12*y) + (g1^6*t^8.02)/y - (g1^24*t^8.1)/y + t^8.37/(g1^33*y) + t^8.44/(g1^15*y) + (2*g1^21*t^8.59)/y + (g1^57*t^8.73)/y - t^8.85/(g1^36*y) - (t^3.98*y)/g1^6 - (t^4.95*y)/g1^12 - (t^6.41*y)/g1^21 - g1^15*t^6.56*y - (t^6.9*y)/g1^24 - (t^6.98*y)/g1^6 - g1^30*t^7.12*y - (t^7.39*y)/g1^27 - g1^9*t^7.54*y - (t^7.88*y)/g1^30 - (t^7.95*y)/g1^12 + g1^6*t^8.02*y - g1^24*t^8.1*y + (t^8.37*y)/g1^33 + (t^8.44*y)/g1^15 + 2*g1^21*t^8.59*y + g1^57*t^8.73*y - (t^8.85*y)/g1^36 + (t^8.93*y^2)/g1^18


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57413 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4334 1.6275 0.8807 [X:[1.3462], M:[0.8172], q:[0.5801, 0.436], qb:[0.4199, 0.6027], phi:[0.3269]] t^2.452 + t^2.568 + t^2.942 + t^3. + t^3.116 + t^3.548 + t^3.981 + t^4.039 + t^4.097 + 2*t^4.529 + t^4.903 + t^4.961 + t^5.019 + t^5.077 + t^5.135 + t^5.308 + t^5.337 + t^5.394 + 2*t^5.51 + t^5.568 + t^5.684 + t^5.769 + t^5.856 + t^5.884 + t^5.942 - 2*t^6. - t^3.981/y - t^4.961/y - t^3.981*y - t^4.961*y detail