Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59471 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.2948 | 1.5198 | 0.852 | [X:[], M:[1.3029, 1.0971], q:[0.4092, 0.5954], qb:[0.2879, 0.3075], phi:[0.4]] | [X:[], M:[[1, 2], [-1, -2]], q:[[-2, -2], [1, 1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$ | ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | 0 | t^2.15 + t^2.4 + t^2.65 + 2*t^3.29 + t^3.35 + t^3.6 + 2*t^3.85 + 3*t^3.91 + t^4.3 + t^4.49 + 2*t^4.55 + 2*t^4.8 + 3*t^5.05 + 2*t^5.11 + t^5.3 + 2*t^5.44 + t^5.5 + 2*t^5.69 + 2*t^5.75 + t^5.94 + 2*t^6.06 + t^6.19 + 4*t^6.25 + 4*t^6.31 + t^6.37 + t^6.45 + 2*t^6.5 + t^6.56 + 3*t^6.58 + 3*t^6.64 + 3*t^6.7 + 2*t^6.89 + 3*t^6.95 + 3*t^7.14 + 8*t^7.2 + 3*t^7.26 + t^7.28 + 4*t^7.45 + 3*t^7.51 + 2*t^7.59 + t^7.65 + 5*t^7.7 + 4*t^7.76 + 2*t^7.78 + 5*t^7.82 + 5*t^7.84 + 3*t^7.9 + t^7.95 + 2*t^8.09 + 2*t^8.21 + 5*t^8.34 + 7*t^8.4 + 5*t^8.46 + t^8.52 + t^8.59 + t^8.6 + 2*t^8.65 + 3*t^8.71 + 2*t^8.73 + 2*t^8.79 + t^8.84 + 3*t^8.85 + 6*t^8.9 + 8*t^8.96 + 4*t^8.98 - t^4.2/y - t^5.4/y - t^6.35/y - t^6.6/y - t^6.85/y - t^7.49/y - t^8.11/y + (2*t^8.44)/y + (2*t^8.94)/y - t^4.2*y - t^5.4*y - t^6.35*y - t^6.6*y - t^6.85*y - t^7.49*y - t^8.11*y + 2*t^8.44*y + 2*t^8.94*y | t^2.15/(g1^2*g2) + t^2.4 + g1^2*g2*t^2.65 + (2*t^3.29)/(g1*g2^2) + t^3.35/(g1^2*g2) + t^3.6 + 2*g1^2*g2*t^3.85 + 3*g1*g2^2*t^3.91 + t^4.3/(g1^4*g2^2) + t^4.49/(g1*g2^2) + (2*t^4.55)/(g1^2*g2) + 2*t^4.8 + 3*g1^2*g2*t^5.05 + 2*g1*g2^2*t^5.11 + g1^4*g2^2*t^5.3 + (2*t^5.44)/(g1^3*g2^3) + t^5.5/(g1^4*g2^2) + (2*t^5.69)/(g1*g2^2) + (2*t^5.75)/(g1^2*g2) + (g1*t^5.94)/g2 + (2*g2*t^6.06)/g1 + g1^3*t^6.19 + 4*g1^2*g2*t^6.25 + 4*g1*g2^2*t^6.31 + g2^3*t^6.37 + t^6.45/(g1^6*g2^3) + 2*g1^4*g2^2*t^6.5 + g1^3*g2^3*t^6.56 + (3*t^6.58)/(g1^2*g2^4) + (3*t^6.64)/(g1^3*g2^3) + (3*t^6.7)/(g1^4*g2^2) + (2*t^6.89)/(g1*g2^2) + (3*t^6.95)/(g1^2*g2) + (3*g1*t^7.14)/g2 + 8*t^7.2 + (3*g2*t^7.26)/g1 + t^7.28/(g1^6*g2^6) + 4*g1^2*g2*t^7.45 + 3*g1*g2^2*t^7.51 + (2*t^7.59)/(g1^5*g2^4) + t^7.65/(g1^6*g2^3) + 5*g1^4*g2^2*t^7.7 + 4*g1^3*g2^3*t^7.76 + (2*t^7.78)/(g1^2*g2^4) + 5*g1^2*g2^4*t^7.82 + (5*t^7.84)/(g1^3*g2^3) + (3*t^7.9)/(g1^4*g2^2) + g1^6*g2^3*t^7.95 + (2*t^8.09)/(g1*g2^2) + (2*t^8.21)/g1^3 + (5*g1*t^8.34)/g2 + 7*t^8.4 + (5*g2*t^8.46)/g1 + (g2^2*t^8.52)/g1^2 + g1^3*t^8.59 + t^8.6/(g1^8*g2^4) + 2*g1^2*g2*t^8.65 + 3*g1*g2^2*t^8.71 + (2*t^8.73)/(g1^4*g2^5) + (2*t^8.79)/(g1^5*g2^4) + g1^5*g2*t^8.84 + (3*t^8.85)/(g1^6*g2^3) + 6*g1^4*g2^2*t^8.9 + 8*g1^3*g2^3*t^8.96 + (4*t^8.98)/(g1^2*g2^4) - t^4.2/y - t^5.4/y - t^6.35/(g1^2*g2*y) - t^6.6/y - (g1^2*g2*t^6.85)/y - t^7.49/(g1*g2^2*y) - (g1*g2^2*t^8.11)/y + (2*t^8.44)/(g1^3*g2^3*y) + (2*g1*t^8.94)/(g2*y) - t^4.2*y - t^5.4*y - (t^6.35*y)/(g1^2*g2) - t^6.6*y - g1^2*g2*t^6.85*y - (t^7.49*y)/(g1*g2^2) - g1*g2^2*t^8.11*y + (2*t^8.44*y)/(g1^3*g2^3) + (2*g1*t^8.94*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57445 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ | 1.377 | 1.602 | 0.8596 | [M:[1.2, 1.2], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] | 3*t^2.4 + 7*t^3.6 + 14*t^4.8 + 17*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail | {a: 1377/1000, c: 801/500, M1: 6/5, M2: 6/5, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5} |