Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59468 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.4967 | 1.7287 | 0.8658 | [X:[], M:[0.6767, 0.994, 0.9695], q:[0.4816, 0.5121], qb:[0.5184, 0.4758], phi:[0.3353]] | [X:[], M:[[-5, 0, -5], [3, 0, 3], [-6, -1, 0]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | t^2.01 + t^2.03 + t^2.87 + t^2.91 + t^2.96 + t^2.98 + t^3. + t^3.88 + t^4.01 + t^4.02 + t^4.04 + t^4.06 + t^4.1 + 2*t^4.88 + t^4.9 + t^4.92 + t^4.94 + 2*t^4.98 + 2*t^4.99 + 3*t^5.01 + t^5.03 + t^5.1 + t^5.42 + t^5.43 + t^5.52 + t^5.54 + t^5.74 + t^5.78 + t^5.82 + t^5.84 + t^5.85 + t^5.87 + 2*t^5.89 + t^5.91 + t^5.93 + t^5.95 + 2*t^5.96 + t^5.98 - 3*t^6. + t^6.02 + 2*t^6.04 + t^6.05 + t^6.07 + t^6.11 + t^6.42 + t^6.44 + t^6.53 + t^6.55 + t^6.75 + t^6.79 + t^6.84 + t^6.86 + t^6.88 + 2*t^6.9 + 2*t^6.91 + 2*t^6.93 + t^6.95 + 3*t^6.97 + 3*t^6.99 + 2*t^7.01 + 4*t^7.02 + 3*t^7.04 + 2*t^7.06 + t^7.08 + t^7.12 + t^7.3 + t^7.35 + t^7.43 + 2*t^7.44 + t^7.46 + t^7.54 + 2*t^7.56 + t^7.57 + t^7.63 + t^7.68 + 3*t^7.76 + t^7.77 + 2*t^7.79 + t^7.81 + t^7.83 + 4*t^7.85 + 2*t^7.87 + 5*t^7.88 + 3*t^7.9 + 2*t^7.92 + 3*t^7.94 + 2*t^7.96 + 6*t^7.98 + 3*t^7.99 - t^8.01 - 2*t^8.03 + 2*t^8.05 + 3*t^8.07 + t^8.08 + t^8.1 + t^8.12 - t^8.14 + t^8.19 + t^8.29 + t^8.3 + t^8.38 + 3*t^8.4 + t^8.41 + t^8.42 + t^8.43 + t^8.45 + t^8.49 + 2*t^8.51 + t^8.53 + t^8.62 - t^8.67 + t^8.69 + t^8.71 + 2*t^8.73 + t^8.74 + 3*t^8.76 + t^8.78 + 3*t^8.8 + 2*t^8.82 + 2*t^8.84 + 3*t^8.85 - 2*t^8.87 + 5*t^8.89 + t^8.91 + 4*t^8.93 + 3*t^8.94 + 2*t^8.95 - 2*t^8.96 + 2*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.04/y - t^6.88/y - t^6.91/y - t^6.97/y - t^6.99/y - t^7.01/y - t^7.02/y + t^7.9/y + t^7.94/y + t^7.98/y + (2*t^7.99)/y + t^8.01/y - t^8.05/y - t^8.07/y + t^8.78/y + t^8.84/y + t^8.85/y + (2*t^8.87)/y + t^8.91/y - t^8.93/y - t^8.94/y + t^8.95/y + t^8.96/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.04*y - t^6.88*y - t^6.91*y - t^6.97*y - t^6.99*y - t^7.01*y - t^7.02*y + t^7.9*y + t^7.94*y + t^7.98*y + 2*t^7.99*y + t^8.01*y - t^8.05*y - t^8.07*y + t^8.78*y + t^8.84*y + t^8.85*y + 2*t^8.87*y + t^8.91*y - t^8.93*y - t^8.94*y + t^8.95*y + t^8.96*y | t^2.01/(g1^2*g3^2) + t^2.03/(g1^5*g3^5) + (g3^6*t^2.87)/g2 + t^2.91/(g1^6*g2) + g1^6*g3^6*t^2.96 + g1^3*g3^3*t^2.98 + t^3. + (g3^5*t^3.88)/(g1*g2) + t^4.01/(g1*g3) + t^4.02/(g1^4*g3^4) + t^4.04/(g1^7*g3^7) + t^4.06/(g1^10*g3^10) + (g1^5*g2*t^4.1)/g3 + (2*g3^4*t^4.88)/(g1^2*g2) + (g3*t^4.9)/(g1^5*g2) + t^4.92/(g1^8*g2*g3^2) + t^4.94/(g1^11*g2*g3^5) + 2*g1^4*g3^4*t^4.98 + 2*g1*g3*t^4.99 + (3*t^5.01)/(g1^2*g3^2) + t^5.03/(g1^5*g3^5) + (g1^4*g2*t^5.1)/g3^2 + (g2*g3^11*t^5.42)/g1 + (g1^5*t^5.43)/(g2^2*g3) + (g1^11*t^5.52)/(g2*g3) + (g2^2*g3^5*t^5.54)/g1 + (g3^12*t^5.74)/g2^2 + (g3^6*t^5.78)/(g1^6*g2^2) + t^5.82/(g1^12*g2^2) + (g1^6*g3^12*t^5.84)/g2 + (g1^3*g3^9*t^5.85)/g2 + (g3^6*t^5.87)/g2 + (2*g3^3*t^5.89)/(g1^3*g2) + t^5.91/(g1^6*g2) + g1^12*g3^12*t^5.93 + g1^9*g3^9*t^5.95 + 2*g1^6*g3^6*t^5.96 + g1^3*g3^3*t^5.98 - 3*t^6. + t^6.02/(g1^3*g3^3) + (2*t^6.04)/(g1^6*g3^6) + t^6.05/(g1^9*g3^9) + t^6.07/(g1^12*g3^12) - g1^6*g2*t^6.09 + t^6.09/(g1^15*g3^15) + (g1^3*g2*t^6.11)/g3^3 + (g2*g3^10*t^6.42)/g1^2 + (g1^4*t^6.44)/(g2^2*g3^2) + (g1^10*t^6.53)/(g2*g3^2) + (g2^2*g3^4*t^6.55)/g1^2 + (g3^11*t^6.75)/(g1*g2^2) + (g3^5*t^6.79)/(g1^7*g2^2) + (g1^5*g3^11*t^6.84)/g2 + (g1^2*g3^8*t^6.86)/g2 + (g3^5*t^6.88)/(g1*g2) + (2*g3^2*t^6.9)/(g1^4*g2) + (2*t^6.91)/(g1^7*g2*g3) + (2*t^6.93)/(g1^10*g2*g3^4) + t^6.95/(g1^13*g2*g3^7) + t^6.97/(g1^16*g2*g3^10) + 2*g1^5*g3^5*t^6.97 + 3*g1^2*g3^2*t^6.99 + (2*t^7.01)/(g1*g3) + (4*t^7.02)/(g1^4*g3^4) + (3*t^7.04)/(g1^7*g3^7) + t^7.06/(g1^10*g3^10) + g1^11*g2*g3^5*t^7.06 + g1^8*g2*g3^2*t^7.08 + (g1^2*g2*t^7.12)/g3^4 + (g3^15*t^7.3)/g1^3 + t^7.35/(g1^3*g2^3*g3^3) - (g1^6*t^7.43)/g2^2 + (2*g2*g3^9*t^7.43)/g1^3 + (2*g1^3*t^7.44)/(g2^2*g3^3) + t^7.46/(g2^2*g3^6) + (2*g1^9*t^7.54)/(g2*g3^3) - g2^2*g3^6*t^7.54 + (2*g2^2*g3^3*t^7.56)/g1^3 + (g2^2*t^7.57)/g1^6 + (g1^15*t^7.63)/g3^3 + (g2^3*t^7.68)/(g1^3*g3^3) + (3*g3^10*t^7.76)/(g1^2*g2^2) + (g3^7*t^7.77)/(g1^5*g2^2) + (2*g3^4*t^7.79)/(g1^8*g2^2) + (g3*t^7.81)/(g1^11*g2^2) + t^7.83/(g1^14*g2^2*g3^2) + t^7.85/(g1^17*g2^2*g3^5) + (3*g1^4*g3^10*t^7.85)/g2 + (2*g1*g3^7*t^7.87)/g2 + (5*g3^4*t^7.88)/(g1^2*g2) + (3*g3*t^7.9)/(g1^5*g2) + (2*t^7.92)/(g1^8*g2*g3^2) + t^7.94/(g1^11*g2*g3^5) + 2*g1^10*g3^10*t^7.94 + 2*g1^7*g3^7*t^7.96 + 6*g1^4*g3^4*t^7.98 + 3*g1*g3*t^7.99 - t^8.01/(g1^2*g3^2) - (2*t^8.03)/(g1^5*g3^5) + (2*t^8.05)/(g1^8*g3^8) + (2*t^8.07)/(g1^11*g3^11) + g1^10*g2*g3^4*t^8.07 + t^8.08/(g1^14*g3^14) + t^8.1/(g1^17*g3^17) + t^8.12/(g1^20*g3^20) - (g2*t^8.14)/(g1^2*g3^8) + (g1^10*g2^2*t^8.19)/g3^2 + (g3^17*t^8.29)/g1 + (g1^5*g3^5*t^8.3)/g2^3 + g1^5*g2*g3^17*t^8.38 + (2*g1^11*g3^5*t^8.4)/g2^2 + g1^2*g2*g3^14*t^8.4 + (g1^8*g3^2*t^8.41)/g2^2 + (g2*g3^11*t^8.42)/g1 + (g2*g3^8*t^8.43)/g1^4 + (g1^2*t^8.45)/(g2^2*g3^4) + (g1^17*g3^5*t^8.49)/g2 + (g1^14*g3^2*t^8.51)/g2 + g1^5*g2^2*g3^11*t^8.51 + g1^2*g2^2*g3^8*t^8.53 + (g1^8*t^8.54)/(g2*g3^4) - (g2^2*g3^5*t^8.54)/g1 - (g1^5*t^8.56)/(g2*g3^7) + (g2^2*g3^2*t^8.56)/g1^4 + (g3^18*t^8.62)/g2^3 - (g1^11*t^8.65)/g3^7 + (g3^12*t^8.65)/(g1^6*g2^3) - (g2^3*t^8.67)/(g1*g3) + (g3^6*t^8.69)/(g1^12*g2^3) + (g1^6*g3^18*t^8.71)/g2^2 + t^8.73/(g1^18*g2^3) + (g1^3*g3^15*t^8.73)/g2^2 + (g3^12*t^8.74)/g2^2 + (3*g3^9*t^8.76)/(g1^3*g2^2) + (g3^6*t^8.78)/(g1^6*g2^2) + (2*g3^3*t^8.8)/(g1^9*g2^2) + (g1^12*g3^18*t^8.8)/g2 + t^8.82/(g1^12*g2^2) + (g1^9*g3^15*t^8.82)/g2 + (2*g1^6*g3^12*t^8.84)/g2 + (3*g1^3*g3^9*t^8.85)/g2 - (2*g3^6*t^8.87)/g2 + (4*g3^3*t^8.89)/(g1^3*g2) + g1^18*g3^18*t^8.89 + g1^15*g3^15*t^8.91 + (2*t^8.93)/(g1^9*g2*g3^3) + 2*g1^12*g3^12*t^8.93 + (3*t^8.94)/(g1^12*g2*g3^6) + 2*g1^9*g3^9*t^8.95 + (2*t^8.96)/(g1^15*g2*g3^9) - 4*g1^6*g3^6*t^8.96 + t^8.98/(g1^18*g2*g3^12) + g1^3*g3^3*t^8.98 - t^4.01/(g1*g3*y) - t^5.01/(g1^2*g3^2*y) - t^6.02/(g1^3*g3^3*y) - t^6.04/(g1^6*g3^6*y) - (g3^5*t^6.88)/(g1*g2*y) - t^6.91/(g1^7*g2*g3*y) - (g1^5*g3^5*t^6.97)/y - (g1^2*g3^2*t^6.99)/y - t^7.01/(g1*g3*y) - t^7.02/(g1^4*g3^4*y) + (g3*t^7.9)/(g1^5*g2*y) + t^7.94/(g1^11*g2*g3^5*y) + (g1^4*g3^4*t^7.98)/y + (2*g1*g3*t^7.99)/y + t^8.01/(g1^2*g3^2*y) - t^8.05/(g1^8*g3^8*y) - t^8.07/(g1^11*g3^11*y) + (g3^6*t^8.78)/(g1^6*g2^2*y) + (g1^6*g3^12*t^8.84)/(g2*y) + (g1^3*g3^9*t^8.85)/(g2*y) + (2*g3^6*t^8.87)/(g2*y) + t^8.91/(g1^6*g2*y) - t^8.93/(g1^9*g2*g3^3*y) - t^8.94/(g1^12*g2*g3^6*y) + (g1^9*g3^9*t^8.95)/y + (g1^6*g3^6*t^8.96)/y - (t^4.01*y)/(g1*g3) - (t^5.01*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^3*g3^3) - (t^6.04*y)/(g1^6*g3^6) - (g3^5*t^6.88*y)/(g1*g2) - (t^6.91*y)/(g1^7*g2*g3) - g1^5*g3^5*t^6.97*y - g1^2*g3^2*t^6.99*y - (t^7.01*y)/(g1*g3) - (t^7.02*y)/(g1^4*g3^4) + (g3*t^7.9*y)/(g1^5*g2) + (t^7.94*y)/(g1^11*g2*g3^5) + g1^4*g3^4*t^7.98*y + 2*g1*g3*t^7.99*y + (t^8.01*y)/(g1^2*g3^2) - (t^8.05*y)/(g1^8*g3^8) - (t^8.07*y)/(g1^11*g3^11) + (g3^6*t^8.78*y)/(g1^6*g2^2) + (g1^6*g3^12*t^8.84*y)/g2 + (g1^3*g3^9*t^8.85*y)/g2 + (2*g3^6*t^8.87*y)/g2 + (t^8.91*y)/(g1^6*g2) - (t^8.93*y)/(g1^9*g2*g3^3) - (t^8.94*y)/(g1^12*g2*g3^6) + g1^9*g3^9*t^8.95*y + g1^6*g3^6*t^8.96*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57472 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4961 | 1.7283 | 0.8656 | [X:[], M:[0.6973, 0.9816], q:[0.5, 0.4816], qb:[0.5, 0.4816], phi:[0.3395]] | t^2.04 + t^2.09 + t^2.89 + 3*t^2.94 + t^3. + 2*t^3.96 + t^4.02 + t^4.07 + t^4.13 + t^4.18 + 2*t^4.93 + 6*t^4.98 + 5*t^5.04 + t^5.09 + 2*t^5.41 + 2*t^5.46 + t^5.78 + 3*t^5.83 + 7*t^5.89 + t^5.94 - t^6. - t^4.02/y - t^5.04/y - t^4.02*y - t^5.04*y | detail |