Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59457 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.0072 1.2296 0.8191 [X:[1.5408, 1.5174, 1.4826, 1.4592], M:[0.9592, 0.7552, 0.7274], q:[0.2405, 0.2639], qb:[0.2187, 0.2769], phi:[0.5]] [X:[[0, 0, -1], [0, -1, 0], [0, 1, 0], [0, 0, 1]], M:[[0, 0, 1], [3, 2, 1], [-3, -1, -1]], q:[[-1, -1, 0], [-1, 0, -1]], qb:[[1, 1, 1], [1, 0, 0]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{2}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{4}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}q_{2}^{2}$ ${}$ -3 t^2.18 + t^2.27 + 2*t^2.88 + t^2.95 + t^3. + t^3.05 + t^3.64 + t^3.8 + t^4.36 + 2*t^4.38 + 3*t^4.45 + t^4.5 + t^4.53 + 2*t^4.55 + 2*t^4.62 + 2*t^5.06 + t^5.13 + 3*t^5.14 + t^5.18 + t^5.21 + 2*t^5.23 + t^5.27 + t^5.3 + 2*t^5.32 + 3*t^5.76 + 2*t^5.83 + t^5.88 + t^5.9 + t^5.91 + t^5.93 + t^5.99 - 3*t^6. + t^6.1 - t^6.12 - t^6.17 + t^6.47 + 2*t^6.52 + t^6.55 + 2*t^6.56 + t^6.59 + 3*t^6.63 + 3*t^6.64 + t^6.66 + t^6.68 - t^6.7 + 3*t^6.71 + 2*t^6.73 + t^6.75 - t^6.77 + 4*t^6.8 + 2*t^6.82 - t^6.86 + t^6.87 + 2*t^6.89 + t^6.99 + 2*t^7.24 + 4*t^7.26 + t^7.29 + t^7.31 + 8*t^7.33 + t^7.36 + 2*t^7.38 + 3*t^7.4 + 3*t^7.41 + 2*t^7.42 + 5*t^7.43 + 3*t^7.45 + t^7.48 + t^7.49 + 8*t^7.5 + t^7.53 + t^7.55 + 2*t^7.57 + 2*t^7.58 + 2*t^7.6 + t^7.61 + t^7.67 + 3*t^7.94 - t^7.97 + 2*t^8.01 + 5*t^8.02 + t^8.06 + t^8.08 + 3*t^8.09 + t^8.11 + t^8.14 + 2*t^8.17 - 2*t^8.18 + 2*t^8.2 - t^8.23 + t^8.25 - 4*t^8.27 - t^8.3 - t^8.32 - 2*t^8.36 - t^8.37 - t^8.39 - 3*t^8.44 - t^8.49 + 4*t^8.63 + t^8.65 + 3*t^8.7 + 2*t^8.73 + 2*t^8.74 + 4*t^8.76 + 2*t^8.77 + 3*t^8.79 + 4*t^8.81 + 4*t^8.83 + t^8.84 + t^8.85 + 2*t^8.86 - 10*t^8.88 + 6*t^8.9 + 3*t^8.91 + 2*t^8.92 + 3*t^8.93 - 6*t^8.95 + 4*t^8.98 + 3*t^8.99 - t^4.5/y - t^6./y - t^6.68/y - t^6.77/y - t^7.38/y + t^7.45/y + t^7.5/y + t^7.62/y + (2*t^8.06)/y + t^8.13/y + (2*t^8.14)/y + t^8.21/y + (2*t^8.23)/y + (2*t^8.32)/y + t^8.76/y + (3*t^8.83)/y - t^8.86/y - t^8.88/y + t^8.91/y + (2*t^8.93)/y - (2*t^8.95)/y + t^8.99/y - t^4.5*y - t^6.*y - t^6.68*y - t^6.77*y - t^7.38*y + t^7.45*y + t^7.5*y + t^7.62*y + 2*t^8.06*y + t^8.13*y + 2*t^8.14*y + t^8.21*y + 2*t^8.23*y + 2*t^8.32*y + t^8.76*y + 3*t^8.83*y - t^8.86*y - t^8.88*y + t^8.91*y + 2*t^8.93*y - 2*t^8.95*y + t^8.99*y t^2.18/(g1^3*g2*g3) + g1^3*g2^2*g3*t^2.27 + 2*g3*t^2.88 + g2*t^2.95 + t^3. + t^3.05/g2 + g1^3*g2^2*g3^2*t^3.64 + t^3.8/(g1^3*g2*g3^2) + t^4.36/(g1^6*g2^2*g3^2) + 2*g3*t^4.38 + 3*g2*t^4.45 + t^4.5 + g1^6*g2^4*g3^2*t^4.53 + (2*t^4.55)/g2 + (2*t^4.62)/g3 + (2*t^5.06)/(g1^3*g2) + t^5.13/(g1^3*g3) + 3*g1^3*g2^2*g3^2*t^5.14 + t^5.18/(g1^3*g2*g3) + g1^3*g2^3*g3*t^5.21 + (2*t^5.23)/(g1^3*g2^2*g3) + g1^3*g2^2*g3*t^5.27 + t^5.3/(g1^3*g2*g3^2) + 2*g1^3*g2*g3*t^5.32 + 3*g3^2*t^5.76 + 2*g2*g3*t^5.83 + g3*t^5.88 + g2^2*t^5.9 + g1^6*g2^4*g3^3*t^5.91 + (g3*t^5.93)/g2 + t^5.99/(g1^6*g2^2*g3^3) - 3*t^6. + t^6.1/g2^2 - t^6.12/g3 - t^6.17/(g2*g3) + g1^3*g2^3*g3^3*t^6.47 + 2*g1^3*g2^2*g3^3*t^6.52 + t^6.55/(g1^9*g2^3*g3^3) + (2*t^6.56)/(g1^3*g2) + g1^3*g2^3*g3^2*t^6.59 + (3*t^6.63)/(g1^3*g3) + 3*g1^3*g2^2*g3^2*t^6.64 + t^6.66/(g1^3*g2^3) + t^6.68/(g1^3*g2*g3) - g1^3*g2*g3^2*t^6.7 + 3*g1^3*g2^3*g3*t^6.71 + (2*t^6.73)/(g1^3*g2^2*g3) + t^6.75/(g1^3*g3^2) - g1^3*g2^2*g3*t^6.77 + (3*t^6.8)/(g1^3*g2*g3^2) + g1^9*g2^6*g3^3*t^6.8 + 2*g1^3*g2*g3*t^6.82 - t^6.86/(g1^3*g2^2*g3^2) + t^6.87/(g1^3*g3^3) + 2*g1^3*g2^2*t^6.89 + g1^3*t^6.99 + (2*t^7.24)/(g1^6*g2^2*g3) + 4*g3^2*t^7.26 + g1^6*g2^4*g3^4*t^7.29 + t^7.31/(g1^6*g2*g3^2) + 8*g2*g3*t^7.33 + t^7.36/(g1^6*g2^2*g3^2) + 2*g3*t^7.38 + 3*g2^2*t^7.4 + 3*g1^6*g2^4*g3^3*t^7.41 + (2*t^7.42)/(g1^6*g2^3*g3^2) + (5*g3*t^7.43)/g2 + 3*g2*t^7.45 + g1^6*g2^5*g3^2*t^7.48 + t^7.49/(g1^6*g2^2*g3^3) + 8*t^7.5 + g1^6*g2^4*g3^2*t^7.53 + t^7.55/g2 + (2*g2*t^7.57)/g3 + 2*g1^6*g2^3*g3^2*t^7.58 + (2*t^7.6)/g2^2 + t^7.61/(g1^6*g2^2*g3^4) + t^7.67/(g2*g3) + (3*g3*t^7.94)/(g1^3*g2) - g1^3*g2^3*g3^3*t^7.97 + (2*t^8.01)/g1^3 + 5*g1^3*g2^2*g3^3*t^8.02 + t^8.06/(g1^3*g2) + (g2*t^8.08)/(g1^3*g3) + 3*g1^3*g2^3*g3^2*t^8.09 + t^8.11/(g1^3*g2^2) + g1^3*g2^2*g3^2*t^8.14 - t^8.16/(g1^3*g2^3) + g1^3*g2^4*g3*t^8.16 + t^8.17/(g1^9*g2^3*g3^4) + g1^9*g2^6*g3^4*t^8.17 - (2*t^8.18)/(g1^3*g2*g3) + 2*g1^3*g2*g3^2*t^8.2 - t^8.23/(g1^3*g2^2*g3) + t^8.25/(g1^3*g3^2) - 4*g1^3*g2^2*g3*t^8.27 - t^8.3/(g1^3*g2*g3^2) - g1^3*g2*g3*t^8.32 - (2*t^8.36)/(g1^3*g2^2*g3^2) - t^8.37/(g1^3*g3^3) - g1^3*g2^2*t^8.39 - 3*g1^3*g2*t^8.44 - g1^3*t^8.49 + 4*g3^3*t^8.63 + g2^2*g3^2*t^8.65 + 3*g2*g3^2*t^8.7 + t^8.73/(g1^12*g2^4*g3^4) + g1^6*g2^5*g3^4*t^8.73 + (2*t^8.74)/(g1^6*g2^2*g3) + 4*g3^2*t^8.76 + 2*g2^2*g3*t^8.77 + 3*g1^6*g2^4*g3^4*t^8.79 + (3*t^8.81)/(g1^6*g2*g3^2) + (g3^2*t^8.81)/g2 + 4*g2*g3*t^8.83 + g2^3*t^8.84 + t^8.85/(g1^6*g2^4*g3) + t^8.86/(g1^6*g2^2*g3^2) + g1^6*g2^5*g3^3*t^8.86 - 10*g3*t^8.88 + 6*g2^2*t^8.9 + 3*g1^6*g2^4*g3^3*t^8.91 + (2*t^8.92)/(g1^6*g2^3*g3^2) + t^8.93/(g1^6*g2*g3^3) + (2*g3*t^8.93)/g2 - 6*g2*t^8.95 + (g3*t^8.98)/g2^2 + 3*g1^6*g2^5*g3^2*t^8.98 + (3*t^8.99)/(g1^6*g2^2*g3^3) - t^4.5/y - t^6./y - t^6.68/(g1^3*g2*g3*y) - (g1^3*g2^2*g3*t^6.77)/y - (g3*t^7.38)/y + (g2*t^7.45)/y + t^7.5/y + t^7.62/(g3*y) + (2*t^8.06)/(g1^3*g2*y) + t^8.13/(g1^3*g3*y) + (2*g1^3*g2^2*g3^2*t^8.14)/y + (g1^3*g2^3*g3*t^8.21)/y + (2*t^8.23)/(g1^3*g2^2*g3*y) + (2*g1^3*g2*g3*t^8.32)/y + (g3^2*t^8.76)/y + (3*g2*g3*t^8.83)/y - t^8.86/(g1^6*g2^2*g3^2*y) - (g3*t^8.88)/y + (g1^6*g2^4*g3^3*t^8.91)/y + (2*g3*t^8.93)/(g2*y) - (2*g2*t^8.95)/y + t^8.99/(g1^6*g2^2*g3^3*y) - t^4.5*y - t^6.*y - (t^6.68*y)/(g1^3*g2*g3) - g1^3*g2^2*g3*t^6.77*y - g3*t^7.38*y + g2*t^7.45*y + t^7.5*y + (t^7.62*y)/g3 + (2*t^8.06*y)/(g1^3*g2) + (t^8.13*y)/(g1^3*g3) + 2*g1^3*g2^2*g3^2*t^8.14*y + g1^3*g2^3*g3*t^8.21*y + (2*t^8.23*y)/(g1^3*g2^2*g3) + 2*g1^3*g2*g3*t^8.32*y + g3^2*t^8.76*y + 3*g2*g3*t^8.83*y - (t^8.86*y)/(g1^6*g2^2*g3^2) - g3*t^8.88*y + g1^6*g2^4*g3^3*t^8.91*y + (2*g3*t^8.93*y)/g2 - 2*g2*t^8.95*y + (t^8.99*y)/(g1^6*g2^2*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57512 SU3adj1nf2 ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{1}^{2}q_{2}$ 0.9877 1.1935 0.8275 [X:[1.535, 1.5082, 1.4918, 1.465], M:[0.965, 0.7415], q:[0.2439, 0.2706], qb:[0.2211, 0.2643], phi:[0.5]] t^2.22 + 2*t^2.9 + t^2.98 + t^3. + t^3.02 + t^3.62 + t^3.75 + t^3.86 + 2*t^4.4 + t^4.45 + 2*t^4.48 + t^4.5 + 2*t^4.52 + 2*t^4.6 + 3*t^5.12 + t^5.2 + t^5.22 + 2*t^5.25 + t^5.28 + t^5.36 + 3*t^5.79 + t^5.84 + t^5.87 + t^5.9 + t^5.92 + t^5.95 + t^5.97 - 3*t^6. - t^4.5/y - t^6./y - t^4.5*y - t^6.*y detail