Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59447 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.4112 1.5998 0.8821 [X:[1.4286], M:[0.7051, 0.7051], q:[0.4404, 0.7261], qb:[0.5687, 0.5504], phi:[0.2857]] [X:[[0, 0]], M:[[-1, 1], [-1, 1]], q:[[-1, -1], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -4 2*t^2.12 + t^2.57 + t^2.97 + t^3.03 + 2*t^3.83 + 3*t^4.23 + t^4.29 + 4*t^4.69 + 2*t^4.74 + 2*t^5.09 + 2*t^5.14 + 2*t^5.54 + 2*t^5.6 + t^5.68 + t^5.87 + t^5.92 + 4*t^5.95 - 4*t^6. + 4*t^6.35 + 4*t^6.4 + 3*t^6.54 + t^6.72 + t^6.78 + 8*t^6.8 + 2*t^6.86 - t^6.91 - t^7.18 + 3*t^7.2 + 6*t^7.26 + 3*t^7.31 + 2*t^7.39 + t^7.53 + t^7.58 + t^7.64 + 8*t^7.66 + t^7.69 + 5*t^7.71 + t^7.77 - 2*t^7.85 + t^7.98 - t^8.04 + 6*t^8.06 - t^8.09 - 5*t^8.12 + t^8.17 + 2*t^8.25 + t^8.44 + 5*t^8.46 + t^8.49 + 12*t^8.52 + 2*t^8.57 + t^8.63 + 4*t^8.65 - 2*t^8.71 + t^8.84 + 12*t^8.92 - t^8.95 - 5*t^8.97 + t^8.57/y^2 - (2*t^8.97)/y^2 - t^3.86/y - t^4.71/y - (2*t^5.97)/y - t^6.43/y - (3*t^6.83)/y - t^6.88/y + t^7.23/y - t^7.29/y - t^8.09/y + (2*t^8.14)/y - (3*t^8.54)/y + t^8.6/y - t^8.95/y - t^3.86*y - t^4.71*y - 2*t^5.97*y - t^6.43*y - 3*t^6.83*y - t^6.88*y + t^7.23*y - t^7.29*y - t^8.09*y + 2*t^8.14*y - 3*t^8.54*y + t^8.6*y - t^8.95*y + t^8.57*y^2 - 2*t^8.97*y^2 (2*g2*t^2.12)/g1 + t^2.57 + (g2*t^2.97)/g1 + (g1*t^3.03)/g2 + (2*g2*t^3.83)/g1 + (3*g2^2*t^4.23)/g1^2 + t^4.29 + (4*g2*t^4.69)/g1 + (2*g1*t^4.74)/g2 + (2*g2^2*t^5.09)/g1^2 + 2*t^5.14 + (2*g2*t^5.54)/g1 + (2*g1*t^5.6)/g2 + t^5.68/(g1^3*g2^3) + g1^2*g2^4*t^5.87 + g1^4*g2^2*t^5.92 + (4*g2^2*t^5.95)/g1^2 - 4*t^6. + (4*g2^3*t^6.35)/g1^3 + (4*g2*t^6.4)/g1 + (3*t^6.54)/(g1^3*g2^3) + g1^2*g2^4*t^6.72 + g1^4*g2^2*t^6.78 + (8*g2^2*t^6.8)/g1^2 + 2*t^6.86 - (g1^2*t^6.91)/g2^2 - g1^3*g2^3*t^7.18 + (3*g2^3*t^7.2)/g1^3 + (6*g2*t^7.26)/g1 + (3*g1*t^7.31)/g2 + (2*t^7.39)/(g1^3*g2^3) + g2^6*t^7.53 + g1^2*g2^4*t^7.58 + g1^4*g2^2*t^7.64 + (8*g2^2*t^7.66)/g1^2 + g1^6*t^7.69 + 5*t^7.71 + (g1^2*t^7.77)/g2^2 - (2*t^7.85)/(g1^2*g2^4) + g1*g2^5*t^7.98 - g1^3*g2^3*t^8.04 + (6*g2^3*t^8.06)/g1^3 - g1^5*g2*t^8.09 - (5*g2*t^8.12)/g1 + (g1*t^8.17)/g2 + (2*t^8.25)/(g1^3*g2^3) + g1^2*g2^4*t^8.44 + (5*g2^4*t^8.46)/g1^4 + g1^4*g2^2*t^8.49 + (12*g2^2*t^8.52)/g1^2 + 2*t^8.57 + (g1^2*t^8.63)/g2^2 + (4*t^8.65)/(g1^4*g2^2) - (2*t^8.71)/(g1^2*g2^4) + g1*g2^5*t^8.84 + (12*g2^3*t^8.92)/g1^3 - g1^5*g2*t^8.95 - (5*g2*t^8.97)/g1 + t^8.57/y^2 - (2*g2*t^8.97)/(g1*y^2) - t^3.86/y - t^4.71/y - (2*g2*t^5.97)/(g1*y) - t^6.43/y - (3*g2*t^6.83)/(g1*y) - (g1*t^6.88)/(g2*y) + (g2^2*t^7.23)/(g1^2*y) - t^7.29/y - (g2^2*t^8.09)/(g1^2*y) + (2*t^8.14)/y - (3*g2*t^8.54)/(g1*y) + (g1*t^8.6)/(g2*y) - (g2^2*t^8.95)/(g1^2*y) - t^3.86*y - t^4.71*y - (2*g2*t^5.97*y)/g1 - t^6.43*y - (3*g2*t^6.83*y)/g1 - (g1*t^6.88*y)/g2 + (g2^2*t^7.23*y)/g1^2 - t^7.29*y - (g2^2*t^8.09*y)/g1^2 + 2*t^8.14*y - (3*g2*t^8.54*y)/g1 + (g1*t^8.6*y)/g2 - (g2^2*t^8.95*y)/g1^2 + t^8.57*y^2 - (2*g2*t^8.97*y^2)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57499 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4229 1.624 0.8762 [X:[1.3773], M:[0.7599, 0.7599], q:[0.39, 0.7014], qb:[0.5387, 0.5016], phi:[0.3114]] 2*t^2.28 + t^2.67 + t^2.79 + t^2.8 + 2*t^3.61 + t^4.13 + 2*t^4.54 + 3*t^4.56 + 2*t^4.65 + 2*t^4.95 + t^5.07 + 2*t^5.08 + t^5.35 + t^5.38 + t^5.46 + 2*t^5.48 + t^5.56 + t^5.57 + 2*t^5.59 + t^5.6 + t^5.67 + 3*t^5.89 - 5*t^6. - t^3.93/y - t^4.87/y - t^3.93*y - t^4.87*y detail