Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59444 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.433 | 1.6071 | 0.8917 | [X:[1.4048], M:[1.1071, 0.6786], q:[0.5952, 0.5119], qb:[0.5952, 0.5119], phi:[0.2976]] | [X:[[0, 4]], M:[[0, 6], [0, -18]], q:[[1, -9], [-2, 20]], qb:[[-1, 1], [2, 0]], phi:[[0, -2]]] | 2 | {a: 321/224, c: 45/28, X1: 59/42, M1: 31/28, M2: 19/28, q1: 25/42, q2: 43/84, qb1: 25/42, qb2: 43/84, phi1: 25/84} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ | ${}$ | -2 | t^2.04 + t^3.07 + 3*t^3.32 + t^3.57 + t^4.07 + 3*t^4.21 + t^4.46 + t^4.86 + 3*t^5.11 + 4*t^5.36 + t^5.61 - 2*t^6. + t^6.11 + t^6.14 + t^6.25 + 3*t^6.39 + t^6.5 + 7*t^6.64 + 3*t^6.89 + 2*t^7.14 + 5*t^7.29 + 4*t^7.39 + 8*t^7.54 + t^7.64 + 4*t^7.79 + t^7.93 - t^8.04 + t^8.14 + 3*t^8.18 + t^8.29 + 9*t^8.43 + t^8.54 + 11*t^8.68 + 2*t^8.93 + t^8.68/y^2 - t^8.93/y^2 - t^3.89/y - t^4.79/y - t^5.93/y - t^6.82/y - t^6.96/y - (3*t^7.21)/y - t^7.46/y - t^7.96/y - (2*t^8.11)/y + (2*t^8.36)/y + t^8.61/y - t^8.86/y - t^3.89*y - t^4.79*y - t^5.93*y - t^6.82*y - t^6.96*y - 3*t^7.21*y - t^7.46*y - t^7.96*y - 2*t^8.11*y + 2*t^8.36*y + t^8.61*y - t^8.86*y + t^8.68*y^2 - t^8.93*y^2 | t^2.04/g2^18 + g2^20*t^3.07 + (g1^3*t^3.32)/g2^9 + g2^6*t^3.32 + (g2^21*t^3.32)/g1^3 + t^3.57/g2^8 + t^4.07/g2^36 + (g1^3*t^4.21)/g2^11 + g2^4*t^4.21 + (g2^19*t^4.21)/g1^3 + t^4.46/g2^10 + g2^16*t^4.86 + (g1^3*t^5.11)/g2^13 + g2^2*t^5.11 + (g2^17*t^5.11)/g1^3 + (g1^3*t^5.36)/g2^27 + (2*t^5.36)/g2^12 + (g2^3*t^5.36)/g1^3 + t^5.61/g2^26 - 2*t^6. + t^6.11/g2^54 + g2^40*t^6.14 + t^6.25/g2^14 + g1^3*g2^11*t^6.39 + g2^26*t^6.39 + (g2^41*t^6.39)/g1^3 + t^6.5/g2^28 + (g1^6*t^6.64)/g2^18 + (g1^3*t^6.64)/g2^3 + 3*g2^12*t^6.64 + (g2^27*t^6.64)/g1^3 + (g2^42*t^6.64)/g1^6 + (g1^3*t^6.89)/g2^17 + t^6.89/g2^2 + (g2^13*t^6.89)/g1^3 + (2*t^7.14)/g2^16 + (g1^6*t^7.29)/g2^6 + g1^3*g2^9*t^7.29 + g2^24*t^7.29 + (g2^39*t^7.29)/g1^3 + (g2^54*t^7.29)/g1^6 + (g1^3*t^7.39)/g2^45 + (2*t^7.39)/g2^30 + t^7.39/(g1^3*g2^15) + (g1^6*t^7.54)/g2^20 + (2*g1^3*t^7.54)/g2^5 + 2*g2^10*t^7.54 + (2*g2^25*t^7.54)/g1^3 + (g2^40*t^7.54)/g1^6 + t^7.64/g2^44 + (g1^3*t^7.79)/g2^19 + (2*t^7.79)/g2^4 + (g2^11*t^7.79)/g1^3 + g2^36*t^7.93 - t^8.04/g2^18 + t^8.14/g2^72 + g1^3*g2^7*t^8.18 + g2^22*t^8.18 + (g2^37*t^8.18)/g1^3 + t^8.29/g2^32 + (g1^6*t^8.43)/g2^22 + (2*g1^3*t^8.43)/g2^7 + 3*g2^8*t^8.43 + (2*g2^23*t^8.43)/g1^3 + (g2^38*t^8.43)/g1^6 + t^8.54/g2^46 + (g1^6*t^8.68)/g2^36 + (2*g1^3*t^8.68)/g2^21 + (5*t^8.68)/g2^6 + (2*g2^9*t^8.68)/g1^3 + (g2^24*t^8.68)/g1^6 + (g1^3*t^8.93)/g2^35 + t^8.93/(g1^3*g2^5) + t^8.68/(g2^6*y^2) - t^8.93/(g2^20*y^2) - t^3.89/(g2^2*y) - t^4.79/(g2^4*y) - t^5.93/(g2^20*y) - t^6.82/(g2^22*y) - (g2^18*t^6.96)/y - (g1^3*t^7.21)/(g2^11*y) - (g2^4*t^7.21)/y - (g2^19*t^7.21)/(g1^3*y) - t^7.46/(g2^10*y) - t^7.96/(g2^38*y) - (g1^3*t^8.11)/(g2^13*y) - (g2^17*t^8.11)/(g1^3*y) + (g1^3*t^8.36)/(g2^27*y) + (g2^3*t^8.36)/(g1^3*y) + t^8.61/(g2^26*y) - t^8.86/(g2^40*y) - (t^3.89*y)/g2^2 - (t^4.79*y)/g2^4 - (t^5.93*y)/g2^20 - (t^6.82*y)/g2^22 - g2^18*t^6.96*y - (g1^3*t^7.21*y)/g2^11 - g2^4*t^7.21*y - (g2^19*t^7.21*y)/g1^3 - (t^7.46*y)/g2^10 - (t^7.96*y)/g2^38 - (g1^3*t^8.11*y)/g2^13 - (g2^17*t^8.11*y)/g1^3 + (g1^3*t^8.36*y)/g2^27 + (g2^3*t^8.36*y)/g1^3 + (t^8.61*y)/g2^26 - (t^8.86*y)/g2^40 + (t^8.68*y^2)/g2^6 - (t^8.93*y^2)/g2^20 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57653 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4123 | 1.5667 | 0.9014 | [X:[1.4039], M:[1.1059], q:[0.5961, 0.5099], qb:[0.5961, 0.5099], phi:[0.298]] | t^3.06 + 3*t^3.32 + t^3.58 + t^3.95 + 3*t^4.21 + t^4.47 + t^4.85 + 2*t^5.11 + t^5.36 - 2*t^6. - t^3.89/y - t^4.79/y - t^3.89*y - t^4.79*y | detail |