Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59438 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4463 1.6803 0.8607 [X:[], M:[0.8726, 0.8726], q:[0.3557, 0.6105], qb:[0.5169, 0.4226], phi:[0.3491]] [X:[], M:[[5, -5], [5, -5]], q:[[-7, -5], [-17, 5]], qb:[[12, 0], [0, 12]], phi:[[2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$ ${}\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ -3 t^2.09 + t^2.33 + 3*t^2.62 + t^3.1 + t^3.14 + t^3.67 + t^4.15 + t^4.19 + 3*t^4.43 + t^4.67 + 4*t^4.71 + 3*t^4.95 + t^5.01 + t^5.13 + 2*t^5.19 + 6*t^5.24 + t^5.42 + t^5.43 + 2*t^5.48 + 2*t^5.72 + 4*t^5.76 + t^5.78 - 3*t^6. + t^6.06 + t^6.18 + t^6.2 + 2*t^6.24 + 3*t^6.28 + t^6.34 + t^6.46 + t^6.48 + 3*t^6.52 + 5*t^6.76 + 5*t^6.81 + t^6.82 + t^6.94 - t^6.99 + t^7. + 7*t^7.05 + 2*t^7.11 + 2*t^7.23 + t^7.25 + 5*t^7.29 + 8*t^7.33 + t^7.47 + 2*t^7.51 + 4*t^7.53 + 8*t^7.57 + t^7.63 + 2*t^7.75 + t^7.77 + t^7.79 + 6*t^7.81 + 12*t^7.85 + 2*t^7.87 - t^7.91 + t^8.03 + t^8.05 + 3*t^8.09 + 2*t^8.11 + 2*t^8.15 + t^8.23 + 2*t^8.27 + 3*t^8.29 - t^8.32 + 8*t^8.38 + 2*t^8.4 + t^8.44 + t^8.52 + t^8.53 + 2*t^8.56 + 5*t^8.58 - 6*t^8.62 + t^8.64 + 2*t^8.68 + t^8.8 + 3*t^8.82 + 10*t^8.86 + t^8.88 + 8*t^8.9 + t^8.92 + 2*t^8.96 - t^4.05/y - t^5.09/y - t^6.14/y - t^6.38/y - (3*t^6.67)/y - t^7.15/y - (2*t^7.19)/y + t^7.43/y + (4*t^7.95)/y + (2*t^8.24)/y + t^8.43/y + (2*t^8.72)/y - t^4.05*y - t^5.09*y - t^6.14*y - t^6.38*y - 3*t^6.67*y - t^7.15*y - 2*t^7.19*y + t^7.43*y + 4*t^7.95*y + 2*t^8.24*y + t^8.43*y + 2*t^8.72*y (g1^4*t^2.09)/g2^4 + (g2^7*t^2.33)/g1^7 + (3*g1^5*t^2.62)/g2^5 + (g2^17*t^3.1)/g1^17 + (g1^6*t^3.14)/g2^6 + (g1^7*t^3.67)/g2^7 + (g2^15*t^4.15)/g1^15 + (g1^8*t^4.19)/g2^8 + (3*g2^3*t^4.43)/g1^3 + (g2^14*t^4.67)/g1^14 + (4*g1^9*t^4.71)/g2^9 + (3*g2^2*t^4.95)/g1^2 + t^5.01/(g1^29*g2^7) + g1^14*g2^22*t^5.13 + (2*g2^13*t^5.19)/g1^13 + (6*g1^10*t^5.24)/g2^10 + g1^26*g2^10*t^5.42 + (g2^24*t^5.43)/g1^24 + (2*g2*t^5.48)/g1 + (2*g2^12*t^5.72)/g1^12 + (4*g1^11*t^5.76)/g2^11 + (g2^3*t^5.78)/g1^39 - 3*t^6. + t^6.06/(g1^27*g2^9) + g1^16*g2^20*t^6.18 + (g2^34*t^6.2)/g1^34 + (2*g2^11*t^6.24)/g1^11 + (3*g1^12*t^6.28)/g2^12 + t^6.34/(g1^15*g2^21) + g1^28*g2^8*t^6.46 + (g2^22*t^6.48)/g1^22 + (3*g1*t^6.52)/g2 + (5*g2^10*t^6.76)/g1^10 + (5*g1^13*t^6.81)/g2^13 + (g2*t^6.82)/g1^37 + g1^6*g2^30*t^6.94 - g1^29*g2^7*t^6.99 + (g2^21*t^7.)/g1^21 + (7*g1^2*t^7.05)/g2^2 + (2*t^7.11)/(g1^25*g2^11) + 2*g1^18*g2^18*t^7.23 + (g2^32*t^7.25)/g1^32 + (5*g2^9*t^7.29)/g1^9 + (8*g1^14*t^7.33)/g2^14 + g1^7*g2^29*t^7.47 + 2*g1^30*g2^6*t^7.51 + (4*g2^20*t^7.53)/g1^20 + (8*g1^3*t^7.57)/g2^3 + t^7.63/(g1^24*g2^12) + 2*g1^19*g2^17*t^7.75 + (g2^31*t^7.77)/g1^31 + (g1^42*t^7.79)/g2^6 + (6*g2^8*t^7.81)/g1^8 + (12*g1^15*t^7.85)/g2^15 + (2*t^7.87)/(g1^35*g2) - t^7.91/(g1^12*g2^24) + g1^31*g2^5*t^8.03 + (g2^19*t^8.05)/g1^19 + (3*g1^4*t^8.09)/g2^4 + (2*g2^10*t^8.11)/g1^46 + (2*t^8.15)/(g1^23*g2^13) + (g2^39*t^8.23)/g1^3 + 2*g1^20*g2^16*t^8.27 + (3*g2^30*t^8.29)/g1^30 - (g1^43*t^8.32)/g2^7 + (8*g1^16*t^8.38)/g2^16 + (2*t^8.4)/(g1^34*g2^2) + t^8.44/(g1^11*g2^25) + g1^9*g2^27*t^8.52 + (g2^41*t^8.53)/g1^41 + 2*g1^32*g2^4*t^8.56 + (5*g2^18*t^8.58)/g1^18 - (6*g1^5*t^8.62)/g2^5 + (g2^9*t^8.64)/g1^45 + (2*t^8.68)/(g1^22*g2^14) + g1^21*g2^15*t^8.8 + (3*g2^29*t^8.82)/g1^29 + (10*g2^6*t^8.86)/g1^6 + (g2^20*t^8.88)/g1^56 + (8*g1^17*t^8.9)/g2^17 + t^8.92/(g1^33*g2^3) + (2*t^8.96)/(g1^10*g2^26) - (g1^2*t^4.05)/(g2^2*y) - (g1^4*t^5.09)/(g2^4*y) - (g1^6*t^6.14)/(g2^6*y) - (g2^5*t^6.38)/(g1^5*y) - (3*g1^7*t^6.67)/(g2^7*y) - (g2^15*t^7.15)/(g1^15*y) - (2*g1^8*t^7.19)/(g2^8*y) + (g2^3*t^7.43)/(g1^3*y) + (4*g2^2*t^7.95)/(g1^2*y) + (2*g1^10*t^8.24)/(g2^10*y) + (g2^24*t^8.43)/(g1^24*y) + (2*g2^12*t^8.72)/(g1^12*y) - (g1^2*t^4.05*y)/g2^2 - (g1^4*t^5.09*y)/g2^4 - (g1^6*t^6.14*y)/g2^6 - (g2^5*t^6.38*y)/g1^5 - (3*g1^7*t^6.67*y)/g2^7 - (g2^15*t^7.15*y)/g1^15 - (2*g1^8*t^7.19*y)/g2^8 + (g2^3*t^7.43*y)/g1^3 + (4*g2^2*t^7.95*y)/g1^2 + (2*g1^10*t^8.24*y)/g2^10 + (g2^24*t^8.43*y)/g1^24 + (2*g2^12*t^8.72*y)/g1^12


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61040 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.2388 1.4263 0.8685 [X:[1.4286], M:[0.7143, 0.7143], q:[0.3214, 0.8929], qb:[0.3929, 0.6786], phi:[0.2857]] 3*t^2.14 + t^2.57 + 2*t^3. + t^3.86 + 6*t^4.29 + 6*t^4.71 + 5*t^5.14 + t^5.25 + 2*t^5.46 + 4*t^5.57 - t^3.86/y - t^4.71/y - (3*t^6.)/y - t^3.86*y - t^4.71*y - 3*t^6.*y detail {a: 54387/43904, c: 62619/43904, X1: 10/7, M1: 5/7, M2: 5/7, q1: 9/28, q2: 25/28, qb1: 11/28, qb2: 19/28, phi1: 2/7}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57732 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4351 1.6621 0.8634 [X:[], M:[0.8773], q:[0.3567, 0.6022], qb:[0.5205, 0.4151], phi:[0.3509]] t^2.11 + t^2.32 + 2*t^2.63 + t^3.05 + t^3.16 + t^3.37 + t^3.68 + t^4.1 + t^4.21 + 3*t^4.42 + t^4.63 + 3*t^4.74 + 2*t^4.95 + t^5. + t^5.1 + 2*t^5.16 + 3*t^5.26 + t^5.37 + t^5.42 + 3*t^5.47 + 2*t^5.68 + t^5.74 + 3*t^5.79 - t^6. - t^4.05/y - t^5.11/y - t^4.05*y - t^5.11*y detail