Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59421 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ 1.4491 1.6533 0.8765 [X:[1.3521], M:[0.8098, 0.8098], q:[0.5786, 0.4449], qb:[0.4214, 0.6116], phi:[0.3239]] [X:[[0, 4]], M:[[0, -5], [0, -5]], q:[[-1, 5], [-1, 12]], qb:[[1, -5], [1, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -3 2*t^2.43 + t^2.6 + t^2.92 + t^3. + t^3.17 + t^3.97 + t^4.06 + t^4.14 + 2*t^4.54 + 3*t^4.86 + t^4.94 + 2*t^5.03 + t^5.11 + t^5.2 + t^5.33 + 2*t^5.34 + t^5.38 + t^5.43 + 2*t^5.51 + 2*t^5.6 + t^5.77 + t^5.78 + t^5.83 + t^5.91 + t^5.92 - 3*t^6. + t^6.08 + t^6.17 + t^6.31 + t^6.34 + t^6.35 + 2*t^6.49 + t^6.57 + t^6.66 + t^6.71 + t^6.74 + t^6.75 + t^6.88 + t^6.89 + t^6.92 + 3*t^6.97 + 2*t^7.06 + 4*t^7.14 + t^7.23 - t^7.24 + t^7.28 + 4*t^7.29 + t^7.31 + t^7.32 - t^7.36 + 5*t^7.46 + 3*t^7.54 + t^7.63 + 3*t^7.71 + t^7.72 + 3*t^7.77 + t^7.8 + t^7.85 + 2*t^7.86 + t^7.93 + 4*t^7.94 + t^7.98 + 3*t^8.03 + 5*t^8.11 + t^8.12 - t^8.17 + 2*t^8.2 + t^8.25 + 2*t^8.26 + 2*t^8.28 + t^8.29 + t^8.33 + t^8.37 + t^8.38 + t^8.42 - 4*t^8.43 + 2*t^8.5 + 4*t^8.51 + t^8.55 - 3*t^8.6 - t^8.61 + 4*t^8.68 + t^8.69 - t^8.74 + t^8.75 + 2*t^8.77 + t^8.82 + t^8.83 + t^8.91 + 2*t^8.92 + t^8.94 + 2*t^8.95 + t^8.92/y^2 - t^3.97/y - t^4.94/y - (2*t^6.4)/y - t^6.57/y - t^6.89/y - t^6.97/y - t^7.14/y - (2*t^7.37)/y - t^7.94/y + (2*t^8.03)/y - t^8.11/y + (2*t^8.34)/y + (2*t^8.43)/y + t^8.51/y + (3*t^8.6)/y + t^8.77/y - (3*t^8.83)/y - t^3.97*y - t^4.94*y - 2*t^6.4*y - t^6.57*y - t^6.89*y - t^6.97*y - t^7.14*y - 2*t^7.37*y - t^7.94*y + 2*t^8.03*y - t^8.11*y + 2*t^8.34*y + 2*t^8.43*y + t^8.51*y + 3*t^8.6*y + t^8.77*y - 3*t^8.83*y + t^8.92*y^2 (2*t^2.43)/g2^5 + g2^7*t^2.6 + t^2.92/g2^6 + t^3. + g2^12*t^3.17 + t^3.97/g2^2 + g2^4*t^4.06 + g2^10*t^4.14 + 2*g2^3*t^4.54 + (3*t^4.86)/g2^10 + t^4.94/g2^4 + 2*g2^2*t^5.03 + g2^8*t^5.11 + g2^14*t^5.2 + (g1^3*t^5.33)/g2^12 + (2*t^5.34)/g2^11 + (g2^27*t^5.38)/g1^3 + t^5.43/g2^5 + 2*g2*t^5.51 + 2*g2^7*t^5.6 + g2^19*t^5.77 + (g2^20*t^5.78)/g1^3 + t^5.83/g2^12 + (g1^3*t^5.91)/g2^7 + t^5.92/g2^6 - 3*t^6. + g2^6*t^6.08 + g2^12*t^6.17 + (g1^3*t^6.31)/g2^14 + g2^24*t^6.34 + (g2^25*t^6.35)/g1^3 + (2*t^6.49)/g2 + g2^5*t^6.57 + g2^11*t^6.66 + (g1^3*t^6.71)/g2^21 + g2^17*t^6.74 + (g2^18*t^6.75)/g1^3 + (g1^3*t^6.88)/g2^9 + t^6.89/g2^8 + (g2^30*t^6.92)/g1^3 + (3*t^6.97)/g2^2 + 2*g2^4*t^7.06 + 4*g2^10*t^7.14 + g2^16*t^7.23 - (g2^17*t^7.24)/g1^3 + (g1^3*t^7.28)/g2^16 + (4*t^7.29)/g2^15 + g2^22*t^7.31 + (g2^23*t^7.32)/g1^3 - (g1^3*t^7.36)/g2^10 + (5*t^7.46)/g2^3 + 3*g2^3*t^7.54 + g2^9*t^7.63 + 3*g2^15*t^7.71 + (g2^16*t^7.72)/g1^3 + (3*t^7.77)/g2^16 + g2^21*t^7.8 + (g1^3*t^7.85)/g2^11 + (2*t^7.86)/g2^10 + (g1^3*t^7.93)/g2^5 + (4*t^7.94)/g2^4 + (g2^34*t^7.98)/g1^3 + 3*g2^2*t^8.03 + 5*g2^8*t^8.11 + (g2^9*t^8.12)/g1^3 - (g1^3*t^8.17)/g2^24 + 2*g2^14*t^8.2 + (g1^3*t^8.25)/g2^18 + (2*t^8.26)/g2^17 + 2*g2^20*t^8.28 + (g2^21*t^8.29)/g1^3 + (g1^3*t^8.33)/g2^12 + g2^26*t^8.37 + (g2^27*t^8.38)/g1^3 + (g1^3*t^8.42)/g2^6 - (4*t^8.43)/g2^5 + 2*g1^3*t^8.5 + 4*g2*t^8.51 + (g2^39*t^8.55)/g1^3 - 3*g2^7*t^8.6 - (g2^8*t^8.61)/g1^3 + 4*g2^13*t^8.68 + (g2^14*t^8.69)/g1^3 - (g1^3*t^8.74)/g2^19 + t^8.75/g2^18 + 2*g2^19*t^8.77 + (g1^3*t^8.82)/g2^13 + t^8.83/g2^12 + (g1^3*t^8.91)/g2^7 + (2*t^8.92)/g2^6 + g2^31*t^8.94 + (2*g2^32*t^8.95)/g1^3 + t^8.92/(g2^6*y^2) - t^3.97/(g2^2*y) - t^4.94/(g2^4*y) - (2*t^6.4)/(g2^7*y) - (g2^5*t^6.57)/y - t^6.89/(g2^8*y) - t^6.97/(g2^2*y) - (g2^10*t^7.14)/y - (2*t^7.37)/(g2^9*y) - t^7.94/(g2^4*y) + (2*g2^2*t^8.03)/y - (g2^8*t^8.11)/y + (2*t^8.34)/(g2^11*y) + (2*t^8.43)/(g2^5*y) + (g2*t^8.51)/y + (3*g2^7*t^8.6)/y + (g2^19*t^8.77)/y - (3*t^8.83)/(g2^12*y) - (t^3.97*y)/g2^2 - (t^4.94*y)/g2^4 - (2*t^6.4*y)/g2^7 - g2^5*t^6.57*y - (t^6.89*y)/g2^8 - (t^6.97*y)/g2^2 - g2^10*t^7.14*y - (2*t^7.37*y)/g2^9 - (t^7.94*y)/g2^4 + 2*g2^2*t^8.03*y - g2^8*t^8.11*y + (2*t^8.34*y)/g2^11 + (2*t^8.43*y)/g2^5 + g2*t^8.51*y + 3*g2^7*t^8.6*y + g2^19*t^8.77*y - (3*t^8.83*y)/g2^12 + (t^8.92*y^2)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57413 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4334 1.6275 0.8807 [X:[1.3462], M:[0.8172], q:[0.5801, 0.436], qb:[0.4199, 0.6027], phi:[0.3269]] t^2.452 + t^2.568 + t^2.942 + t^3. + t^3.116 + t^3.548 + t^3.981 + t^4.039 + t^4.097 + 2*t^4.529 + t^4.903 + t^4.961 + t^5.019 + t^5.077 + t^5.135 + t^5.308 + t^5.337 + t^5.394 + 2*t^5.51 + t^5.568 + t^5.684 + t^5.769 + t^5.856 + t^5.884 + t^5.942 - 2*t^6. - t^3.981/y - t^4.961/y - t^3.981*y - t^4.961*y detail