Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59412 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.2542 | 1.4535 | 0.8629 | [X:[1.3716, 1.4089], M:[0.9813, 1.0187, 0.9325], q:[0.4129, 0.3755], qb:[0.2156, 0.6546], phi:[0.3902]] | [X:[[0, 2, 0], [0, 0, 2]], M:[[0, 1, -1], [0, -1, 1], [0, 6, 4]], q:[[-1, -6, -4], [-1, -4, -6]], qb:[[1, 4, 4], [1, 0, 0]], phi:[[0, 1, 1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$ | ${}$ | -3 | t^2.34 + t^2.8 + t^2.94 + t^3.06 + t^3.09 + t^3.51 + 2*t^4.11 + 2*t^4.23 + t^4.26 + t^4.37 + t^4.43 + t^4.66 + t^4.77 + t^5.14 + t^5.29 + t^5.4 + 2*t^5.43 + t^5.45 + t^5.54 + 2*t^5.6 + 2*t^5.74 + t^5.83 + t^5.85 + t^5.89 + t^5.95 - 3*t^6. + t^6.03 + t^6.15 + t^6.18 + t^6.31 - t^6.4 + 3*t^6.46 + 3*t^6.57 + t^6.6 + 2*t^6.77 + t^6.89 + 2*t^6.91 + t^6.92 + 2*t^7. + 2*t^7.02 + 2*t^7.06 + 2*t^7.12 + 2*t^7.17 + 3*t^7.21 + t^7.23 + t^7.28 + 2*t^7.32 - t^7.34 + t^7.35 + t^7.43 + t^7.46 + t^7.52 - t^7.57 + t^7.61 + 2*t^7.63 - t^7.68 + 2*t^7.74 + t^7.75 + t^7.77 + t^7.79 + t^7.83 + t^7.86 + t^7.89 - t^7.92 + 2*t^7.94 - t^8.03 + t^8.08 + t^8.09 + 2*t^8.17 + 4*t^8.23 + t^8.25 + 2*t^8.29 - t^8.32 + 4*t^8.38 + t^8.39 + t^8.4 - t^8.43 + 2*t^8.45 + 5*t^8.49 + 3*t^8.52 + 3*t^8.54 + 3*t^8.6 + 2*t^8.63 + t^8.65 + 3*t^8.69 - 2*t^8.74 + t^8.75 + t^8.78 - t^8.8 + t^8.83 + t^8.84 - t^8.85 + t^8.86 + 2*t^8.89 + t^8.91 + 2*t^8.92 - 4*t^8.94 + t^8.96 + t^8.98 - t^4.17/y - t^5.34/y - t^6.51/y - t^6.97/y - t^7.26/y - (2*t^7.68)/y + t^7.83/y - t^8.29/y - t^8.4/y + t^8.74/y + t^8.85/y + t^8.89/y - t^4.17*y - t^5.34*y - t^6.51*y - t^6.97*y - t^7.26*y - 2*t^7.68*y + t^7.83*y - t^8.29*y - t^8.4*y + t^8.74*y + t^8.85*y + t^8.89*y | g2^2*g3^2*t^2.34 + g2^6*g3^4*t^2.8 + (g2*t^2.94)/g3 + (g3*t^3.06)/g2 + t^3.09/(g2^4*g3^6) + g2^3*g3^3*t^3.51 + 2*g2^2*t^4.11 + 2*g3^2*t^4.23 + t^4.26/(g2^3*g3^5) + t^4.37/(g2^5*g3^3) + g1^3*g2^9*g3^9*t^4.43 + t^4.66/(g1^3*g2^13*g3^15) + t^4.77/(g1^3*g2^15*g3^13) + g2^8*g3^6*t^5.14 + g2^3*g3*t^5.29 + g2*g3^3*t^5.4 + (2*t^5.43)/(g2^2*g3^4) + g1^3*g2^15*g3^15*t^5.45 + t^5.54/(g2^4*g3^2) + g2^12*g3^8*t^5.6 + g1^3*g2^10*g3^10*t^5.6 + g2^7*g3^3*t^5.74 + g1^3*g2^5*g3^5*t^5.74 + t^5.83/(g1^3*g2^12*g3^14) + g2^5*g3^5*t^5.85 + (g2^2*t^5.89)/g3^2 + t^5.95/(g1^3*g2^14*g3^12) - 3*t^6. + t^6.03/(g2^3*g3^7) + t^6.15/(g2^5*g3^5) + t^6.18/(g2^8*g3^12) + g2^9*g3^7*t^6.31 - t^6.4/(g1^3*g2^10*g3^10) + 3*g2^4*g3^2*t^6.46 + 3*g2^2*g3^4*t^6.57 + t^6.6/(g2*g3^3) + 2*g1^3*g2^11*g3^11*t^6.77 + t^6.89/(g1^3*g2^9*g3^15) + 2*g2^8*g3^4*t^6.91 + g1^3*g2^6*g3^6*t^6.92 + (2*t^7.)/(g1^3*g2^11*g3^13) + 2*g2^6*g3^6*t^7.02 + (2*g2^3*t^7.06)/g3 + (2*t^7.12)/(g1^3*g2^13*g3^11) + 2*g2*g3*t^7.17 + (3*t^7.21)/(g2^2*g3^6) + t^7.23/(g1^3*g2^15*g3^9) + (g3^3*t^7.28)/g2 + (2*t^7.32)/(g2^4*g3^4) - g1^3*g2^13*g3^15*t^7.34 + t^7.35/(g2^7*g3^11) + t^7.43/(g2^6*g3^2) + t^7.46/(g2^9*g3^9) + g1^3*g2^5*g3^3*t^7.52 - t^7.57/(g1^3*g2^9*g3^9) + t^7.61/(g1^3*g2^12*g3^16) + 2*g2^5*g3^3*t^7.63 - t^7.68/(g1^3*g2^11*g3^7) + 2*g2^3*g3^5*t^7.74 + t^7.75/(g1^3*g2^17*g3^21) + t^7.77/g3^2 + g1^3*g2^17*g3^17*t^7.79 + t^7.83/(g1^3*g2^16*g3^12) + t^7.86/(g1^3*g2^19*g3^19) + t^7.89/g2^2 - t^7.92/(g2^5*g3^7) + g2^14*g3^10*t^7.94 + g1^3*g2^12*g3^12*t^7.94 - t^8.03/(g2^7*g3^5) + g2^9*g3^5*t^8.08 + g1^3*g2^7*g3^7*t^8.09 + (2*t^8.17)/(g1^3*g2^10*g3^12) + 4*g2^4*t^8.23 + g1^3*g2^21*g3^19*t^8.25 + (2*t^8.29)/(g1^3*g2^12*g3^10) - t^8.32/(g1^3*g2^15*g3^17) + (4*t^8.38)/(g2*g3^5) + g2^18*g3^12*t^8.39 + g1^3*g2^16*g3^14*t^8.4 - t^8.43/(g1^3*g2^17*g3^15) + 2*g3^4*t^8.45 + (5*t^8.49)/(g2^3*g3^3) + (3*t^8.52)/(g2^6*g3^10) + g2^13*g3^7*t^8.54 + 2*g1^3*g2^11*g3^9*t^8.54 + (3*t^8.6)/(g2^5*g3) + (2*t^8.63)/(g2^8*g3^8) + g2^11*g3^9*t^8.65 + g2^8*g3^2*t^8.69 + 2*g1^3*g2^6*g3^4*t^8.69 - (2*t^8.74)/(g1^3*g2^8*g3^8) + t^8.75/(g2^10*g3^6) + t^8.78/(g1^3*g2^11*g3^15) - 2*g2^6*g3^4*t^8.8 + g1^3*g2^4*g3^6*t^8.8 + (g2^3*t^8.83)/g3^3 + (g1^3*g2*t^8.84)/g3 - t^8.85/(g1^3*g2^10*g3^6) + g1^6*g2^18*g3^18*t^8.86 + (2*t^8.89)/(g1^3*g2^13*g3^13) + g2^4*g3^6*t^8.91 + (2*t^8.92)/(g1^3*g2^16*g3^20) - (4*g2*t^8.94)/g3 + g1^3*g2^18*g3^18*t^8.96 + t^8.98/(g2^2*g3^8) - (g2*g3*t^4.17)/y - (g2^2*g3^2*t^5.34)/y - (g2^3*g3^3*t^6.51)/y - (g2^7*g3^5*t^6.97)/y - t^7.26/(g2^3*g3^5*y) - (2*g2^4*g3^4*t^7.68)/y + t^7.83/(g2*g3*y) - (g2^3*g3*t^8.29)/y - (g2*g3^3*t^8.4)/y + (g2^7*g3^3*t^8.74)/y + (g2^5*g3^5*t^8.85)/y + (g2^2*t^8.89)/(g3^2*y) - g2*g3*t^4.17*y - g2^2*g3^2*t^5.34*y - g2^3*g3^3*t^6.51*y - g2^7*g3^5*t^6.97*y - (t^7.26*y)/(g2^3*g3^5) - 2*g2^4*g3^4*t^7.68*y + (t^7.83*y)/(g2*g3) - g2^3*g3*t^8.29*y - g2*g3^3*t^8.4*y + g2^7*g3^3*t^8.74*y + g2^5*g3^5*t^8.85*y + (g2^2*t^8.89*y)/g3^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57639 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ | 1.2512 | 1.4516 | 0.8619 | [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] | t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y | detail |