Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59408 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4542 1.6688 0.8714 [X:[1.3461], M:[0.8174, 0.673], q:[0.5801, 0.4358], qb:[0.4199, 0.6025], phi:[0.327]] [X:[[0, 4]], M:[[0, -5], [0, 2]], q:[[-1, 5], [-1, 12]], qb:[[1, -5], [1, 0]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -2 t^2.02 + t^2.45 + t^2.57 + t^2.94 + t^3. + t^3.11 + t^3.55 + 2*t^4.04 + t^4.1 + t^4.47 + 2*t^4.53 + t^4.59 + t^4.9 + 2*t^4.96 + 2*t^5.02 + t^5.08 + 2*t^5.13 + t^5.31 + t^5.34 + t^5.39 + 2*t^5.51 + 2*t^5.57 + t^5.68 + t^5.77 + t^5.86 + t^5.89 + t^5.94 - 2*t^6. + 3*t^6.06 + 3*t^6.11 + t^6.23 + t^6.29 + t^6.32 - 2*t^6.43 + 3*t^6.49 + 2*t^6.55 + 2*t^6.61 + 2*t^6.66 + t^6.72 + t^6.75 + t^6.84 + t^6.86 + t^6.92 + 2*t^6.98 + 4*t^7.04 + 5*t^7.1 + 3*t^7.15 + t^7.21 - t^7.24 + t^7.27 + t^7.3 + 2*t^7.36 + 3*t^7.47 + 4*t^7.53 + 3*t^7.59 + 4*t^7.64 + 2*t^7.7 + t^7.73 - t^7.76 + t^7.82 + t^7.85 + 2*t^7.87 + 3*t^7.9 + 2*t^7.96 - 2*t^8.02 + 9*t^8.08 + 4*t^8.13 + t^8.16 + t^8.19 - t^8.22 + 3*t^8.25 + t^8.28 + t^8.31 + 3*t^8.34 + t^8.36 - t^8.39 + 2*t^8.42 - t^8.45 + 5*t^8.51 - t^8.57 + 7*t^8.62 - t^8.65 + 4*t^8.68 + t^8.71 - t^8.74 + 2*t^8.8 + t^8.83 + 3*t^8.86 + 4*t^8.88 + t^8.94 + t^8.97 + t^8.94/y^2 - t^3.98/y - t^4.96/y - t^6./y - t^6.43/y - t^6.55/y - t^6.92/y - (2*t^6.98)/y - t^7.1/y - t^7.41/y + t^7.47/y - t^7.53/y + t^7.59/y - t^7.9/y + t^7.96/y + t^8.02/y - t^8.08/y + t^8.13/y + t^8.39/y + (2*t^8.57)/y + t^8.68/y - t^8.89/y - t^3.98*y - t^4.96*y - t^6.*y - t^6.43*y - t^6.55*y - t^6.92*y - 2*t^6.98*y - t^7.1*y - t^7.41*y + t^7.47*y - t^7.53*y + t^7.59*y - t^7.9*y + t^7.96*y + t^8.02*y - t^8.08*y + t^8.13*y + t^8.39*y + 2*t^8.57*y + t^8.68*y - t^8.89*y + t^8.94*y^2 g2^2*t^2.02 + t^2.45/g2^5 + g2^7*t^2.57 + t^2.94/g2^6 + t^3. + g2^12*t^3.11 + g2^5*t^3.55 + 2*g2^4*t^4.04 + g2^10*t^4.1 + t^4.47/g2^3 + 2*g2^3*t^4.53 + g2^9*t^4.59 + t^4.9/g2^10 + (2*t^4.96)/g2^4 + 2*g2^2*t^5.02 + g2^8*t^5.08 + 2*g2^14*t^5.13 + (g1^3*t^5.31)/g2^12 + (g2^27*t^5.34)/g1^3 + t^5.39/g2^11 + 2*g2*t^5.51 + 2*g2^7*t^5.57 + g2^19*t^5.68 + (g2^20*t^5.77)/g1^3 + (g1^3*t^5.86)/g2^7 + t^5.89/g2^12 + t^5.94/g2^6 - 2*t^6. + 3*g2^6*t^6.06 + 3*g2^12*t^6.11 + g2^24*t^6.23 + (g1^3*t^6.29)/g2^14 + (g2^25*t^6.32)/g1^3 - (2*t^6.43)/g2^7 + (3*t^6.49)/g2 + 2*g2^5*t^6.55 + 2*g2^11*t^6.61 + 2*g2^17*t^6.66 + (g1^3*t^6.72)/g2^21 + (g2^18*t^6.75)/g1^3 + (g1^3*t^6.84)/g2^9 + (g2^30*t^6.86)/g1^3 + t^6.92/g2^8 + (2*t^6.98)/g2^2 + 4*g2^4*t^7.04 + 5*g2^10*t^7.1 + 3*g2^16*t^7.15 + g2^22*t^7.21 - (g2^17*t^7.24)/g1^3 + (g1^3*t^7.27)/g2^16 + (g2^23*t^7.3)/g1^3 + t^7.36/g2^15 + (g2^29*t^7.36)/g1^3 + (3*t^7.47)/g2^3 + 4*g2^3*t^7.53 + 3*g2^9*t^7.59 + 4*g2^15*t^7.64 + 2*g2^21*t^7.7 + (g2^16*t^7.73)/g1^3 - (g1^3*t^7.76)/g2^17 + (g1^3*t^7.82)/g2^11 + t^7.85/g2^16 + (2*g1^3*t^7.87)/g2^5 + (2*t^7.9)/g2^10 + (g2^34*t^7.9)/g1^3 + (2*t^7.96)/g2^4 - 2*g2^2*t^8.02 + 9*g2^8*t^8.08 + 4*g2^14*t^8.13 + (g2^9*t^8.16)/g1^3 - (g1^3*t^8.19)/g2^24 + 2*g2^20*t^8.19 - (g2^15*t^8.22)/g1^3 + (g1^3*t^8.25)/g2^18 + 2*g2^26*t^8.25 + (g2^21*t^8.28)/g1^3 + (g1^3*t^8.31)/g2^12 + t^8.34/g2^17 + (2*g2^27*t^8.34)/g1^3 + (g1^3*t^8.36)/g2^6 - t^8.39/g2^11 + 2*g1^3*t^8.42 - (2*t^8.45)/g2^5 + (g2^39*t^8.45)/g1^3 + 5*g2*t^8.51 - g2^7*t^8.57 + 7*g2^13*t^8.62 - (g2^8*t^8.65)/g1^3 + 4*g2^19*t^8.68 + (g2^14*t^8.71)/g1^3 - (g1^3*t^8.74)/g2^19 + (g1^3*t^8.8)/g2^13 + g2^31*t^8.8 + t^8.83/g2^18 + (3*g1^3*t^8.86)/g2^7 + (4*g2^32*t^8.88)/g1^3 + t^8.94/g2^6 + g1^3*g2^5*t^8.97 + t^8.94/(g2^6*y^2) - t^3.98/(g2^2*y) - t^4.96/(g2^4*y) - t^6./y - t^6.43/(g2^7*y) - (g2^5*t^6.55)/y - t^6.92/(g2^8*y) - (2*t^6.98)/(g2^2*y) - (g2^10*t^7.1)/y - t^7.41/(g2^9*y) + t^7.47/(g2^3*y) - (g2^3*t^7.53)/y + (g2^9*t^7.59)/y - t^7.9/(g2^10*y) + t^7.96/(g2^4*y) + (g2^2*t^8.02)/y - (g2^8*t^8.08)/y + (g2^14*t^8.13)/y + t^8.39/(g2^11*y) + (2*g2^7*t^8.57)/y + (g2^19*t^8.68)/y - t^8.89/(g2^12*y) - (t^3.98*y)/g2^2 - (t^4.96*y)/g2^4 - t^6.*y - (t^6.43*y)/g2^7 - g2^5*t^6.55*y - (t^6.92*y)/g2^8 - (2*t^6.98*y)/g2^2 - g2^10*t^7.1*y - (t^7.41*y)/g2^9 + (t^7.47*y)/g2^3 - g2^3*t^7.53*y + g2^9*t^7.59*y - (t^7.9*y)/g2^10 + (t^7.96*y)/g2^4 + g2^2*t^8.02*y - g2^8*t^8.08*y + g2^14*t^8.13*y + (t^8.39*y)/g2^11 + 2*g2^7*t^8.57*y + g2^19*t^8.68*y - (t^8.89*y)/g2^12 + (t^8.94*y^2)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57413 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.4334 1.6275 0.8807 [X:[1.3462], M:[0.8172], q:[0.5801, 0.436], qb:[0.4199, 0.6027], phi:[0.3269]] t^2.452 + t^2.568 + t^2.942 + t^3. + t^3.116 + t^3.548 + t^3.981 + t^4.039 + t^4.097 + 2*t^4.529 + t^4.903 + t^4.961 + t^5.019 + t^5.077 + t^5.135 + t^5.308 + t^5.337 + t^5.394 + 2*t^5.51 + t^5.568 + t^5.684 + t^5.769 + t^5.856 + t^5.884 + t^5.942 - 2*t^6. - t^3.981/y - t^4.961/y - t^3.981*y - t^4.961*y detail