Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59391 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.2512 1.4513 0.8621 [X:[1.4013, 1.3991], M:[1.0011, 0.9989], q:[0.382, 0.3842], qb:[0.2167, 0.6158], phi:[0.4002]] [X:[[0, -6], [0, 4]], M:[[0, -5], [0, 5]], q:[[-1, 10], [-1, 0]], qb:[[1, -4], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$ 1 t^2.4 + t^2.99 + 3*t^3. + t^3.6 + t^4.19 + 5*t^4.2 + t^4.35 + 2*t^4.65 + 2*t^5.39 + 4*t^5.4 + 3*t^5.55 + 2*t^5.85 + 3*t^5.99 + t^6. - t^6.45 + 5*t^6.6 + 3*t^6.61 + 3*t^6.75 + t^7.04 + 4*t^7.05 + t^7.06 + 7*t^7.19 + 9*t^7.2 + t^7.21 + t^7.34 - t^7.35 + 2*t^7.64 - t^7.79 + 3*t^7.8 + 2*t^7.81 + 3*t^7.95 - t^8.24 + 3*t^8.25 + 13*t^8.39 + 11*t^8.4 + 2*t^8.41 + 3*t^8.54 + 5*t^8.55 + t^8.7 + 3*t^8.84 + 3*t^8.85 + 2*t^8.98 - t^4.2/y - t^5.4/y - t^6.6/y - t^7.19/y - t^7.2/y - t^7.8/y - (2*t^8.4)/y + (2*t^8.99)/y - t^4.2*y - t^5.4*y - t^6.6*y - t^7.19*y - t^7.2*y - t^7.8*y - 2*t^8.4*y + 2*t^8.99*y t^2.4/g2^2 + g2^10*t^2.99 + t^3. + t^3./g2^5 + g2^5*t^3. + t^3.6/g2^3 + g2^9*t^4.19 + (2*t^4.2)/g2^6 + t^4.2/g2 + 2*g2^4*t^4.2 + (g1^3*t^4.35)/g2^9 + (g2^9*t^4.65)/g1^3 + (g2^19*t^4.65)/g1^3 + 2*g2^8*t^5.39 + t^5.4/g2^7 + (2*t^5.4)/g2^2 + g2^3*t^5.4 + (g1^3*t^5.55)/g2^15 + (g1^3*t^5.55)/g2^10 + (g1^3*t^5.55)/g2^5 + (g2^8*t^5.85)/g1^3 + (g2^18*t^5.85)/g1^3 + g2^10*t^5.99 + g2^15*t^5.99 + g2^20*t^5.99 - 2*t^6. + t^6./g2^5 + 2*g2^5*t^6. - (g2^10*t^6.45)/g1^3 + t^6.6/g2^3 + 3*g2^2*t^6.6 + g2^7*t^6.6 + (3*t^6.61)/g2^8 + (2*g1^3*t^6.75)/g2^11 + (g1^3*t^6.75)/g2^6 + (g2^27*t^7.04)/g1^3 + (2*g2^7*t^7.05)/g1^3 + (2*g2^17*t^7.05)/g1^3 + t^7.06/(g1^3*g2^3) + 3*g2^9*t^7.19 + 3*g2^14*t^7.19 + g2^19*t^7.19 + (3*t^7.2)/g2^6 + (2*t^7.2)/g2 + 4*g2^4*t^7.2 + t^7.21/g2^11 + g1^3*g2*t^7.34 - (g1^3*t^7.35)/g2^19 + (g2^24*t^7.64)/g1^3 + (g2^29*t^7.64)/g1^3 - (g2^9*t^7.65)/g1^3 + (g2^19*t^7.65)/g1^3 - t^7.66/(g1^3*g2) + (g2^4*t^7.66)/g1^3 - g2^11*t^7.79 + t^7.8/g2^4 + g2*t^7.8 + g2^6*t^7.8 + (2*t^7.81)/g2^9 + (g1^3*t^7.95)/g2^17 + (g1^3*t^7.95)/g2^12 + (g1^3*t^7.95)/g2^7 - (g2^21*t^8.24)/g1^3 + (2*g2^6*t^8.25)/g1^3 - (g2^11*t^8.25)/g1^3 + (2*g2^16*t^8.25)/g1^3 + 6*g2^8*t^8.39 + 4*g2^13*t^8.39 + 3*g2^18*t^8.39 + (3*t^8.4)/g2^7 + (2*t^8.4)/g2^2 + 6*g2^3*t^8.4 + (2*t^8.41)/g2^12 + 2*g1^3*t^8.54 + g1^3*g2^5*t^8.54 + (g1^3*t^8.55)/g2^15 + (2*g1^3*t^8.55)/g2^10 + (2*g1^3*t^8.55)/g2^5 + (g1^6*t^8.7)/g2^18 + (g2^23*t^8.84)/g1^3 + (2*g2^28*t^8.84)/g1^3 - (g2^8*t^8.85)/g1^3 + (2*g2^13*t^8.85)/g1^3 + (2*g2^18*t^8.85)/g1^3 - t^8.86/(g1^3*g2^2) + (g2^3*t^8.86)/g1^3 + g2^25*t^8.98 + g2^30*t^8.98 - 3*g2^10*t^8.99 + 2*g2^15*t^8.99 + g2^20*t^8.99 - t^4.2/(g2*y) - t^5.4/(g2^2*y) - t^6.6/(g2^3*y) - (g2^9*t^7.19)/y - t^7.2/(g2*y) - (2*t^7.8)/(g2^4*y) + (g2*t^7.8)/y - t^8.4/(g2^7*y) - (g2^3*t^8.4)/y + (g2^10*t^8.99)/y + (g2^15*t^8.99)/y - (t^4.2*y)/g2 - (t^5.4*y)/g2^2 - (t^6.6*y)/g2^3 - g2^9*t^7.19*y - (t^7.2*y)/g2 - (2*t^7.8*y)/g2^4 + g2*t^7.8*y - (t^8.4*y)/g2^7 - g2^3*t^8.4*y + g2^10*t^8.99*y + g2^15*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57639 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.2512 1.4516 0.8619 [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y detail