Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59370 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ 1.3473 1.5605 0.8634 [X:[1.3528], M:[0.7642], q:[0.3333, 0.5691], qb:[0.6667, 0.3138], phi:[0.3528]] [X:[[1]], M:[[5]], q:[[0], [-5]], qb:[[0], [-1]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{5}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ 2 t^2.12 + t^2.29 + t^2.65 + 2*t^3. + t^3.18 + t^3.71 + 3*t^4.06 + t^4.23 + t^4.41 + t^4.59 + 4*t^4.77 + t^4.94 + 3*t^5.12 + 2*t^5.29 + t^5.3 + 2*t^5.47 + 2*t^5.65 + 4*t^5.82 + 2*t^6. + 6*t^6.18 + 4*t^6.35 + t^6.36 + 2*t^6.53 + t^6.7 + 3*t^6.71 + 6*t^6.88 + 6*t^7.06 + 5*t^7.23 + 7*t^7.41 + 4*t^7.59 + t^7.76 + 8*t^7.77 + 4*t^7.94 + t^7.95 + 10*t^8.12 + 5*t^8.29 + 3*t^8.3 + 13*t^8.47 + 4*t^8.64 + t^8.65 + 13*t^8.82 - t^4.06/y - t^5.12/y - t^6.18/y - t^6.35/y - t^6.71/y - t^7.06/y - (2*t^7.23)/y + (2*t^7.94)/y - t^8.12/y + t^8.29/y - t^8.64/y + (2*t^8.65)/y - t^4.06*y - t^5.12*y - t^6.18*y - t^6.35*y - t^6.71*y - t^7.06*y - 2*t^7.23*y + 2*t^7.94*y - t^8.12*y + t^8.29*y - t^8.64*y + 2*t^8.65*y g1^2*t^2.12 + g1^5*t^2.29 + t^2.65/g1^6 + 2*t^3. + g1^3*t^3.18 + t^3.71/g1^5 + 3*g1*t^4.06 + g1^4*t^4.23 + g1^7*t^4.41 + g1^10*t^4.59 + (4*t^4.77)/g1^4 + t^4.94/g1 + 3*g1^2*t^5.12 + 2*g1^5*t^5.29 + t^5.3/g1^12 + t^5.47/g1^9 + g1^8*t^5.47 + (2*t^5.65)/g1^6 + (4*t^5.82)/g1^3 + 2*t^6. + 6*g1^3*t^6.18 + 4*g1^6*t^6.35 + t^6.36/g1^11 + t^6.53/g1^8 + g1^9*t^6.53 + g1^12*t^6.7 + (3*t^6.71)/g1^5 + (5*t^6.88)/g1^2 + g1^15*t^6.88 + 6*g1*t^7.06 + 5*g1^4*t^7.23 + (5*t^7.41)/g1^10 + 2*g1^7*t^7.41 + (2*t^7.59)/g1^7 + 2*g1^10*t^7.59 + g1^13*t^7.76 + (8*t^7.77)/g1^4 + (4*t^7.94)/g1 + t^7.95/g1^18 + t^8.12/g1^15 + 9*g1^2*t^8.12 + 5*g1^5*t^8.29 + (3*t^8.3)/g1^12 + (7*t^8.47)/g1^9 + 6*g1^8*t^8.47 + 4*g1^11*t^8.64 + t^8.65/g1^6 + (12*t^8.82)/g1^3 + g1^14*t^8.82 - (g1*t^4.06)/y - (g1^2*t^5.12)/y - (g1^3*t^6.18)/y - (g1^6*t^6.35)/y - t^6.71/(g1^5*y) - (g1*t^7.06)/y - (2*g1^4*t^7.23)/y + (2*t^7.94)/(g1*y) - (g1^2*t^8.12)/y + (g1^5*t^8.29)/y - (g1^11*t^8.64)/y + (2*t^8.65)/(g1^6*y) - g1*t^4.06*y - g1^2*t^5.12*y - g1^3*t^6.18*y - g1^6*t^6.35*y - (t^6.71*y)/g1^5 - g1*t^7.06*y - 2*g1^4*t^7.23*y + (2*t^7.94*y)/g1 - g1^2*t^8.12*y + g1^5*t^8.29*y - g1^11*t^8.64*y + (2*t^8.65*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
60993 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}M_{2}$ 1.3293 1.5297 0.869 [X:[1.3563], M:[0.7816, 1.2184], q:[0.3333, 0.5517], qb:[0.6667, 0.3103], phi:[0.3563]] t^2.14 + t^2.59 + 2*t^3. + t^3.21 + 2*t^3.66 + 3*t^4.07 + t^4.28 + 4*t^4.72 + 3*t^5.14 + t^5.17 + t^5.38 + 2*t^5.59 + 5*t^5.79 + t^6. - t^4.07/y - t^5.14/y - t^4.07*y - t^5.14*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57470 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.348 1.5616 0.8633 [X:[1.354], M:[0.7701], q:[0.3455, 0.5754], qb:[0.6545, 0.3005], phi:[0.354]] t^2.12 + t^2.31 + t^2.63 + 2*t^3. + t^3.19 + t^3.69 + 3*t^4.06 + t^4.25 + t^4.43 + t^4.62 + 3*t^4.75 + t^4.83 + t^4.86 + 3*t^5.12 + t^5.26 + 2*t^5.31 + t^5.5 + t^5.55 + 2*t^5.63 + 3*t^5.81 + 3*t^5.89 + t^5.92 - t^6. - t^4.06/y - t^5.12/y - t^4.06*y - t^5.12*y detail