Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59361 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4412 | 1.6233 | 0.8878 | [X:[1.3471], M:[0.9826, 1.0206], q:[0.4522, 0.487], qb:[0.5304, 0.5716], phi:[0.3265]] | [X:[[0, 6]], M:[[-1, 11], [0, 9]], q:[[-1, 22], [1, 0]], qb:[[0, -11], [0, 7]], phi:[[0, -3]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | 2*t^2.95 + t^3.06 + t^3.07 + t^3.18 + t^3.93 + t^4.03 + t^4.04 + t^4.05 + t^4.16 + t^4.91 + t^5.01 + t^5.03 + t^5.13 + t^5.15 + t^5.26 + 2*t^5.9 - 3*t^6. + 2*t^6.01 + 2*t^6.02 - t^6.1 + 2*t^6.12 + 2*t^6.13 + t^6.14 + 2*t^6.24 + t^6.25 + t^6.35 + t^6.87 + 3*t^6.99 + 3*t^7. + t^7.01 - t^7.08 + t^7.09 + 3*t^7.1 + 3*t^7.11 + t^7.12 + t^7.21 + 3*t^7.22 + t^7.23 + t^7.32 + t^7.33 + t^7.71 - t^7.84 + 2*t^7.85 - t^7.95 + 2*t^7.96 + t^7.97 + 3*t^7.98 + t^8.07 + 4*t^8.08 + t^8.09 + 3*t^8.1 + t^8.19 + t^8.2 + 3*t^8.21 + t^8.22 + t^8.23 + t^8.31 + t^8.32 + 2*t^8.33 + t^8.43 - t^8.7 - t^8.8 - t^8.82 + t^8.83 + 2*t^8.84 - t^8.93 + 3*t^8.94 - 6*t^8.95 + 3*t^8.96 + 2*t^8.97 + t^8.94/y^2 - t^3.98/y - t^4.96/y - (2*t^6.93)/y - t^7.04/y - t^7.05/y - t^7.16/y - (2*t^7.91)/y - t^8.02/y - t^8.03/y - t^8.13/y - t^8.89/y + t^8.9/y - t^8.99/y - t^3.98*y - t^4.96*y - 2*t^6.93*y - t^7.04*y - t^7.05*y - t^7.16*y - 2*t^7.91*y - t^8.02*y - t^8.03*y - t^8.13*y - t^8.89*y + t^8.9*y - t^8.99*y + t^8.94*y^2 | (2*g2^11*t^2.95)/g1 + g2^9*t^3.06 + (g2^29*t^3.07)/g1 + g1*g2^7*t^3.18 + (g2^8*t^3.93)/g1 + (g1*t^4.03)/g2^14 + g2^6*t^4.04 + (g2^26*t^4.05)/g1 + g1*g2^4*t^4.16 + (g2^5*t^4.91)/g1 + (g1*t^5.01)/g2^17 + (g2^23*t^5.03)/g1 + g1*g2*t^5.13 + (g2^41*t^5.15)/g1 + g1*g2^19*t^5.26 + (2*g2^22*t^5.9)/g1^2 - 3*t^6. + (2*g2^20*t^6.01)/g1 + (2*g2^40*t^6.02)/g1^2 - (g1^2*t^6.1)/g2^22 + 2*g2^18*t^6.12 + (2*g2^38*t^6.13)/g1 + (g2^58*t^6.14)/g1^2 + 2*g1*g2^16*t^6.24 + g2^36*t^6.25 + g1^2*g2^14*t^6.35 + (g2^19*t^6.87)/g1^2 + (3*g2^17*t^6.99)/g1 + (3*g2^37*t^7.)/g1^2 + (g2^57*t^7.01)/g1^3 - (g1^2*t^7.08)/g2^25 + (g1*t^7.09)/g2^5 + 3*g2^15*t^7.1 + (3*g2^35*t^7.11)/g1 + (g2^55*t^7.12)/g1^2 + (g1^2*t^7.21)/g2^7 + 3*g1*g2^13*t^7.22 + g2^33*t^7.23 + (g1^3*t^7.32)/g2^9 + g1^2*g2^11*t^7.33 + t^7.71/g2^42 - t^7.84/(g1*g2^4) + (2*g2^16*t^7.85)/g1^2 - (g1*t^7.95)/g2^26 + (2*t^7.96)/g2^6 + (g2^14*t^7.97)/g1 + (3*g2^34*t^7.98)/g1^2 + (g1*t^8.07)/g2^8 + 4*g2^12*t^8.08 + (g2^32*t^8.09)/g1 + (3*g2^52*t^8.1)/g1^2 + (g1^2*t^8.19)/g2^10 + g1*g2^10*t^8.2 + 3*g2^30*t^8.21 + (g2^50*t^8.22)/g1 + (g2^70*t^8.23)/g1^2 + g1^2*g2^8*t^8.31 + g1*g2^28*t^8.32 + 2*g2^48*t^8.33 + g1^2*g2^26*t^8.43 - t^8.7/(g1*g2^25) - (g1*t^8.8)/g2^47 - t^8.82/(g1*g2^7) + (g2^13*t^8.83)/g1^2 + (2*g2^33*t^8.84)/g1^3 - (g1*t^8.93)/g2^29 + (3*t^8.94)/g2^9 - (6*g2^11*t^8.95)/g1 + (3*g2^31*t^8.96)/g1^2 + (2*g2^51*t^8.97)/g1^3 + t^8.94/(g2^9*y^2) - t^3.98/(g2^3*y) - t^4.96/(g2^6*y) - (2*g2^8*t^6.93)/(g1*y) - (g2^6*t^7.04)/y - (g2^26*t^7.05)/(g1*y) - (g1*g2^4*t^7.16)/y - (2*g2^5*t^7.91)/(g1*y) - (g2^3*t^8.02)/y - (g2^23*t^8.03)/(g1*y) - (g1*g2*t^8.13)/y - (g2^2*t^8.89)/(g1*y) + (g2^22*t^8.9)/(g1^2*y) - (g1*t^8.99)/(g2^20*y) - (t^3.98*y)/g2^3 - (t^4.96*y)/g2^6 - (2*g2^8*t^6.93*y)/g1 - g2^6*t^7.04*y - (g2^26*t^7.05*y)/g1 - g1*g2^4*t^7.16*y - (2*g2^5*t^7.91*y)/g1 - g2^3*t^8.02*y - (g2^23*t^8.03*y)/g1 - g1*g2*t^8.13*y - (g2^2*t^8.89*y)/g1 + (g2^22*t^8.9*y)/g1^2 - (g1*t^8.99*y)/g2^20 + (t^8.94*y^2)/g2^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57462 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ | 1.4434 | 1.6252 | 0.8882 | [X:[1.3517], M:[0.9823], q:[0.4603, 0.4957], qb:[0.522, 0.5769], phi:[0.3242]] | t^2.92 + 2*t^2.95 + t^3.11 + t^3.22 + t^3.92 + t^4.03 + t^4.05 + t^4.08 + t^4.19 + t^4.89 + t^5. + t^5.06 + t^5.16 + t^5.22 + t^5.33 + t^5.84 + 2*t^5.86 + 2*t^5.89 - 3*t^6. - t^3.97/y - t^4.95/y - t^3.97*y - t^4.95*y | detail |