Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59271 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.5165 1.7672 0.8581 [X:[], M:[0.988, 0.6866, 0.6866], q:[0.4939, 0.4939], qb:[0.5061, 0.4821], phi:[0.3373]] [X:[], M:[[0, -3, 3], [1, 11, -5], [-1, -1, -5]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.02 + 2*t^2.06 + 2*t^2.93 + t^2.96 + 2*t^3. + 2*t^4.01 + t^4.05 + 2*t^4.08 + 3*t^4.12 + 4*t^4.95 + 5*t^4.99 + 6*t^5.02 + 4*t^5.06 + t^5.42 + 2*t^5.46 + t^5.49 + 3*t^5.86 + 2*t^5.89 + 4*t^5.93 + 2*t^5.96 - 3*t^6. + 2*t^6.04 + 4*t^6.07 + 2*t^6.11 + 3*t^6.14 + 4*t^6.18 + t^6.43 + 2*t^6.47 + t^6.51 + 3*t^6.94 + 6*t^6.98 + 8*t^7.01 + 12*t^7.05 + 10*t^7.08 + 6*t^7.12 + t^7.37 + t^7.45 + 6*t^7.48 + 5*t^7.52 + 2*t^7.55 + t^7.59 + 7*t^7.88 + 8*t^7.92 + 14*t^7.95 + 10*t^7.99 + 4*t^8.02 - 4*t^8.06 + 3*t^8.1 + 6*t^8.13 + 3*t^8.17 + 4*t^8.2 + 5*t^8.24 + 2*t^8.35 + 5*t^8.39 + 4*t^8.42 + 2*t^8.46 + 2*t^8.49 + t^8.53 + 4*t^8.78 + 3*t^8.82 + 6*t^8.86 + 4*t^8.89 - 8*t^8.93 + 3*t^8.96 - t^4.01/y - t^5.02/y - t^6.04/y - (2*t^6.07)/y - (2*t^6.94)/y - t^6.98/y - (2*t^7.01)/y - t^7.05/y + t^7.12/y + (2*t^7.95)/y + (5*t^7.99)/y + (2*t^8.02)/y + (3*t^8.06)/y - (2*t^8.1)/y - (3*t^8.13)/y + t^8.86/y + (2*t^8.89)/y + (4*t^8.93)/y - t^4.01*y - t^5.02*y - t^6.04*y - 2*t^6.07*y - 2*t^6.94*y - t^6.98*y - 2*t^7.01*y - t^7.05*y + t^7.12*y + 2*t^7.95*y + 5*t^7.99*y + 2*t^8.02*y + 3*t^8.06*y - 2*t^8.1*y - 3*t^8.13*y + t^8.86*y + 2*t^8.89*y + 4*t^8.93*y (g2^2*t^2.02)/g3^2 + t^2.06/(g1*g2*g3^5) + (g1*g2^11*t^2.06)/g3^5 + g1*g3^6*t^2.93 + (g3^6*t^2.93)/(g1*g2^12) + (g3^3*t^2.96)/g2^3 + t^3./(g1*g2^6) + g1*g2^6*t^3. + t^4.01/(g1*g2^5*g3) + (g1*g2^7*t^4.01)/g3 + (g2^4*t^4.05)/g3^4 + (g2*t^4.08)/(g1*g3^7) + (g1*g2^13*t^4.08)/g3^7 + t^4.12/(g1^2*g2^2*g3^10) + (g2^10*t^4.12)/g3^10 + (g1^2*g2^22*t^4.12)/g3^10 + (2*g3^4*t^4.95)/(g1*g2^10) + 2*g1*g2^2*g3^4*t^4.95 + (g3*t^4.99)/(g1^2*g2^13) + (3*g3*t^4.99)/g2 + g1^2*g2^11*g3*t^4.99 + (3*t^5.02)/(g1*g2^4*g3^2) + (3*g1*g2^8*t^5.02)/g3^2 + t^5.06/(g1^2*g2^7*g3^5) + (2*g2^5*t^5.06)/g3^5 + (g1^2*g2^17*t^5.06)/g3^5 + g2^7*g3^11*t^5.42 + t^5.46/(g1*g2^23*g3) + (g1*t^5.46)/(g2^11*g3) + g2^13*g3^5*t^5.49 + g1^2*g3^12*t^5.86 + (g3^12*t^5.86)/(g1^2*g2^24) + (g3^12*t^5.86)/g2^12 + (g3^9*t^5.89)/(g1*g2^15) + (g1*g3^9*t^5.89)/g2^3 + (g3^6*t^5.93)/(g1^2*g2^18) + (2*g3^6*t^5.93)/g2^6 + g1^2*g2^6*g3^6*t^5.93 + (g3^3*t^5.96)/(g1*g2^9) + g1*g2^3*g3^3*t^5.96 - 3*t^6. + t^6.04/(g1*g2^3*g3^3) + (g1*g2^9*t^6.04)/g3^3 + t^6.07/(g1^2*g2^6*g3^6) + (2*g2^6*t^6.07)/g3^6 + (g1^2*g2^18*t^6.07)/g3^6 + (g2^3*t^6.11)/(g1*g3^9) + (g1*g2^15*t^6.11)/g3^9 + t^6.14/(g1^2*g3^12) + (g2^12*t^6.14)/g3^12 + (g1^2*g2^24*t^6.14)/g3^12 + t^6.18/(g1^3*g2^3*g3^15) + (g2^9*t^6.18)/(g1*g3^15) + (g1*g2^21*t^6.18)/g3^15 + (g1^3*g2^33*t^6.18)/g3^15 + g2^8*g3^10*t^6.43 + t^6.47/(g1*g2^22*g3^2) + (g1*t^6.47)/(g2^10*g3^2) + g2^14*g3^4*t^6.51 + (g3^5*t^6.94)/(g1^2*g2^17) + (g3^5*t^6.94)/g2^5 + g1^2*g2^7*g3^5*t^6.94 + (3*g3^2*t^6.98)/(g1*g2^8) + 3*g1*g2^4*g3^2*t^6.98 + (2*t^7.01)/(g1^2*g2^11*g3) + (4*g2*t^7.01)/g3 + (2*g1^2*g2^13*t^7.01)/g3 + t^7.05/(g1^3*g2^14*g3^4) + (5*t^7.05)/(g1*g2^2*g3^4) + (5*g1*g2^10*t^7.05)/g3^4 + (g1^3*g2^22*t^7.05)/g3^4 + (3*t^7.08)/(g1^2*g2^5*g3^7) + (4*g2^7*t^7.08)/g3^7 + (3*g1^2*g2^19*t^7.08)/g3^7 + t^7.12/(g1^3*g2^8*g3^10) + (2*g2^4*t^7.12)/(g1*g3^10) + (2*g1*g2^16*t^7.12)/g3^10 + (g1^3*g2^28*t^7.12)/g3^10 + g2^3*g3^15*t^7.37 - t^7.45/g2^18 + 2*g2^9*g3^9*t^7.45 + t^7.48/(g1^3*g2^33*g3^3) + (2*t^7.48)/(g1*g2^21*g3^3) + (2*g1*t^7.48)/(g2^9*g3^3) + (g1^3*g2^3*t^7.48)/g3^3 + (g1^2*t^7.52)/g3^6 + t^7.52/(g1^2*g2^24*g3^6) + t^7.52/(g2^12*g3^6) + 2*g2^15*g3^3*t^7.52 + (g2^12*t^7.55)/g1 + g1*g2^24*t^7.55 + (g2^21*t^7.59)/g3^3 + (2*g3^10*t^7.88)/(g1^2*g2^22) + (3*g3^10*t^7.88)/g2^10 + 2*g1^2*g2^2*g3^10*t^7.88 + (g3^7*t^7.92)/(g1^3*g2^25) + (3*g3^7*t^7.92)/(g1*g2^13) + (3*g1*g3^7*t^7.92)/g2 + g1^3*g2^11*g3^7*t^7.92 + (4*g3^4*t^7.95)/(g1^2*g2^16) + (6*g3^4*t^7.95)/g2^4 + 4*g1^2*g2^8*g3^4*t^7.95 + (g3*t^7.99)/(g1^3*g2^19) + (4*g3*t^7.99)/(g1*g2^7) + 4*g1*g2^5*g3*t^7.99 + g1^3*g2^17*g3*t^7.99 + (2*t^8.02)/(g1^2*g2^10*g3^2) + (2*g1^2*g2^14*t^8.02)/g3^2 - (2*t^8.06)/(g1*g2*g3^5) - (2*g1*g2^11*t^8.06)/g3^5 + t^8.1/(g1^2*g2^4*g3^8) + (g2^8*t^8.1)/g3^8 + (g1^2*g2^20*t^8.1)/g3^8 + t^8.13/(g1^3*g2^7*g3^11) + (2*g2^5*t^8.13)/(g1*g3^11) + (2*g1*g2^17*t^8.13)/g3^11 + (g1^3*g2^29*t^8.13)/g3^11 + (g2^2*t^8.17)/(g1^2*g3^14) + (g2^14*t^8.17)/g3^14 + (g1^2*g2^26*t^8.17)/g3^14 + t^8.2/(g1^3*g2*g3^17) + (g2^11*t^8.2)/(g1*g3^17) + (g1*g2^23*t^8.2)/g3^17 + (g1^3*g2^35*t^8.2)/g3^17 + t^8.24/(g1^4*g2^4*g3^20) + (g2^8*t^8.24)/(g1^2*g3^20) + (g2^20*t^8.24)/g3^20 + (g1^2*g2^32*t^8.24)/g3^20 + (g1^4*g2^44*t^8.24)/g3^20 + (g3^17*t^8.35)/(g1*g2^5) + g1*g2^7*g3^17*t^8.35 + (g3^5*t^8.39)/(g1^2*g2^35) + (2*g3^5*t^8.39)/g2^23 + (g1^2*g3^5*t^8.39)/g2^11 + g2^4*g3^14*t^8.39 + (g3^2*t^8.42)/(g1*g2^26) + (g1*g3^2*t^8.42)/g2^14 + (g2*g3^11*t^8.42)/g1 + g1*g2^13*g3^11*t^8.42 + 2*g2^10*g3^8*t^8.46 + t^8.49/(g1*g2^20*g3^4) + (g1*t^8.49)/(g2^8*g3^4) + g2^16*g3^2*t^8.53 + g1^3*g3^18*t^8.78 + (g3^18*t^8.78)/(g1^3*g2^36) + (g3^18*t^8.78)/(g1*g2^24) + (g1*g3^18*t^8.78)/g2^12 + (g3^15*t^8.82)/(g1^2*g2^27) + (g3^15*t^8.82)/g2^15 + (g1^2*g3^15*t^8.82)/g2^3 + (g3^12*t^8.86)/(g1^3*g2^30) + (2*g3^12*t^8.86)/(g1*g2^18) + (2*g1*g3^12*t^8.86)/g2^6 + g1^3*g2^6*g3^12*t^8.86 + (g3^9*t^8.89)/(g1^2*g2^21) + (2*g3^9*t^8.89)/g2^9 + g1^2*g2^3*g3^9*t^8.89 - 4*g1*g3^6*t^8.93 - (4*g3^6*t^8.93)/(g1*g2^12) + (2*g3^3*t^8.96)/(g1^2*g2^15) - (g3^3*t^8.96)/g2^3 + 2*g1^2*g2^9*g3^3*t^8.96 - (g2*t^4.01)/(g3*y) - (g2^2*t^5.02)/(g3^2*y) - (g2^3*t^6.04)/(g3^3*y) - t^6.07/(g1*g3^6*y) - (g1*g2^12*t^6.07)/(g3^6*y) - (g3^5*t^6.94)/(g1*g2^11*y) - (g1*g2*g3^5*t^6.94)/y - (g3^2*t^6.98)/(g2^2*y) - t^7.01/(g1*g2^5*g3*y) - (g1*g2^7*t^7.01)/(g3*y) - (g2^4*t^7.05)/(g3^4*y) + (g2^10*t^7.12)/(g3^10*y) + (g3^4*t^7.95)/(g1*g2^10*y) + (g1*g2^2*g3^4*t^7.95)/y + (g3*t^7.99)/(g1^2*g2^13*y) + (3*g3*t^7.99)/(g2*y) + (g1^2*g2^11*g3*t^7.99)/y + t^8.02/(g1*g2^4*g3^2*y) + (g1*g2^8*t^8.02)/(g3^2*y) + t^8.06/(g1^2*g2^7*g3^5*y) + (g2^5*t^8.06)/(g3^5*y) + (g1^2*g2^17*t^8.06)/(g3^5*y) - (g2^2*t^8.1)/(g1*g3^8*y) - (g1*g2^14*t^8.1)/(g3^8*y) - t^8.13/(g1^2*g2*g3^11*y) - (g2^11*t^8.13)/(g3^11*y) - (g1^2*g2^23*t^8.13)/(g3^11*y) + (g3^12*t^8.86)/(g2^12*y) + (g3^9*t^8.89)/(g1*g2^15*y) + (g1*g3^9*t^8.89)/(g2^3*y) + (g3^6*t^8.93)/(g1^2*g2^18*y) + (2*g3^6*t^8.93)/(g2^6*y) + (g1^2*g2^6*g3^6*t^8.93)/y - (g2*t^4.01*y)/g3 - (g2^2*t^5.02*y)/g3^2 - (g2^3*t^6.04*y)/g3^3 - (t^6.07*y)/(g1*g3^6) - (g1*g2^12*t^6.07*y)/g3^6 - (g3^5*t^6.94*y)/(g1*g2^11) - g1*g2*g3^5*t^6.94*y - (g3^2*t^6.98*y)/g2^2 - (t^7.01*y)/(g1*g2^5*g3) - (g1*g2^7*t^7.01*y)/g3 - (g2^4*t^7.05*y)/g3^4 + (g2^10*t^7.12*y)/g3^10 + (g3^4*t^7.95*y)/(g1*g2^10) + g1*g2^2*g3^4*t^7.95*y + (g3*t^7.99*y)/(g1^2*g2^13) + (3*g3*t^7.99*y)/g2 + g1^2*g2^11*g3*t^7.99*y + (t^8.02*y)/(g1*g2^4*g3^2) + (g1*g2^8*t^8.02*y)/g3^2 + (t^8.06*y)/(g1^2*g2^7*g3^5) + (g2^5*t^8.06*y)/g3^5 + (g1^2*g2^17*t^8.06*y)/g3^5 - (g2^2*t^8.1*y)/(g1*g3^8) - (g1*g2^14*t^8.1*y)/g3^8 - (t^8.13*y)/(g1^2*g2*g3^11) - (g2^11*t^8.13*y)/g3^11 - (g1^2*g2^23*t^8.13*y)/g3^11 + (g3^12*t^8.86*y)/g2^12 + (g3^9*t^8.89*y)/(g1*g2^15) + (g1*g3^9*t^8.89*y)/g2^3 + (g3^6*t^8.93*y)/(g1^2*g2^18) + (2*g3^6*t^8.93*y)/g2^6 + g1^2*g2^6*g3^6*t^8.93*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61096 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.5162 1.7667 0.8582 [X:[], M:[0.9921, 0.6876, 0.6719], q:[0.4882, 0.5039], qb:[0.5039, 0.4882], phi:[0.336]] 2*t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + t^3.98 + 4*t^4.03 + 2*t^4.08 + t^4.13 + 3*t^4.95 + 9*t^4.99 + 6*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.91 + 5*t^5.95 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57493 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4958 1.7274 0.8659 [X:[], M:[0.9861, 0.6877], q:[0.4952, 0.4907], qb:[0.5071, 0.4792], phi:[0.338]] t^2.03 + t^2.06 + t^2.91 + t^2.92 + t^2.96 + t^2.99 + t^3.01 + t^3.92 + t^4.01 + t^4.02 + t^4.06 + t^4.09 + t^4.13 + 2*t^4.94 + 2*t^4.95 + t^4.97 + 2*t^4.99 + 3*t^5.02 + 2*t^5.03 + t^5.06 + t^5.07 + t^5.41 + t^5.44 + t^5.46 + t^5.49 + t^5.82 + t^5.83 + t^5.85 + t^5.87 + t^5.88 + t^5.9 + 2*t^5.92 + t^5.93 + 2*t^5.95 + t^5.96 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail