Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59144 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$ 1.2402 1.4463 0.8575 [X:[1.4121, 1.4121], M:[1.0, 1.0], q:[0.3333, 0.3333], qb:[0.2546, 0.6062], phi:[0.4121]] [X:[[2, 0], [0, 2]], M:[[1, -1], [-1, 1]], q:[[-1, 1], [1, -1]], qb:[[-1, -1], [-5, -5]], phi:[[1, 1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$ ${}M_{1}^{2}$, ${ }M_{2}^{2}$ -2 t^2.47 + 2*t^2.82 + 2*t^3. + t^3.71 + 2*t^4.05 + 6*t^4.24 + t^4.58 + 4*t^5.29 + 4*t^5.47 + 4*t^5.64 + 5*t^5.82 - 2*t^6. - t^6.18 + 2*t^6.53 + 12*t^6.71 + 5*t^6.87 + 16*t^7.05 + 5*t^7.24 + 2*t^7.4 - 4*t^7.42 - 2*t^7.58 - 2*t^7.76 + 8*t^7.95 + 11*t^8.11 + 22*t^8.29 + 6*t^8.46 + 11*t^8.47 + 10*t^8.64 - 6*t^8.65 - 6*t^8.82 - t^4.24/y - t^5.47/y - t^6.71/y - (2*t^7.05)/y + t^7.76/y - (2*t^7.95)/y - (2*t^8.47)/y + t^8.64/y + (5*t^8.82)/y - t^4.24*y - t^5.47*y - t^6.71*y - 2*t^7.05*y + t^7.76*y - 2*t^7.95*y - 2*t^8.47*y + t^8.64*y + 5*t^8.82*y g1^2*g2^2*t^2.47 + t^2.82/(g1^4*g2^6) + t^2.82/(g1^6*g2^4) + (g1*t^3.)/g2 + (g2*t^3.)/g1 + g1^3*g2^3*t^3.71 + t^4.05/(g1^3*g2^5) + t^4.05/(g1^5*g2^3) + 3*g1^2*t^4.24 + 3*g2^2*t^4.24 + t^4.58/(g1^6*g2^6) + (2*t^5.29)/(g1^2*g2^4) + (2*t^5.29)/(g1^4*g2^2) + 2*g1^3*g2*t^5.47 + 2*g1*g2^3*t^5.47 + t^5.64/(g1^8*g2^12) + (2*t^5.64)/(g1^10*g2^10) + t^5.64/(g1^12*g2^8) + t^5.82/(g1^3*g2^7) + (3*t^5.82)/(g1^5*g2^5) + t^5.82/(g1^7*g2^3) - 2*t^6. - g1^5*g2^5*t^6.18 + t^6.53/(g1*g2^3) + t^6.53/(g1^3*g2) + g1^6*t^6.71 + 5*g1^4*g2^2*t^6.71 + 5*g1^2*g2^4*t^6.71 + g2^6*t^6.71 + t^6.87/(g1^7*g2^11) + (3*t^6.87)/(g1^9*g2^9) + t^6.87/(g1^11*g2^7) + (4*t^7.05)/(g1^2*g2^6) + (8*t^7.05)/(g1^4*g2^4) + (4*t^7.05)/(g1^6*g2^2) + (2*g1^3*t^7.24)/g2 + g1*g2*t^7.24 + (2*g2^3*t^7.24)/g1 + t^7.4/(g1^10*g2^12) + t^7.4/(g1^12*g2^10) - g1^8*g2^4*t^7.42 - 2*g1^6*g2^6*t^7.42 - g1^4*g2^8*t^7.42 - t^7.58/(g1^5*g2^7) - t^7.58/(g1^7*g2^5) - t^7.76/g1^2 - t^7.76/g2^2 + 4*g1^5*g2^3*t^7.95 + 4*g1^3*g2^5*t^7.95 + (3*t^8.11)/(g1^6*g2^10) + (5*t^8.11)/(g1^8*g2^8) + (3*t^8.11)/(g1^10*g2^6) + (6*t^8.29)/(g1*g2^5) + (10*t^8.29)/(g1^3*g2^3) + (6*t^8.29)/(g1^5*g2) + t^8.46/(g1^12*g2^18) + (2*t^8.46)/(g1^14*g2^16) + (2*t^8.46)/(g1^16*g2^14) + t^8.46/(g1^18*g2^12) + 4*g1^4*t^8.47 + 3*g1^2*g2^2*t^8.47 + 4*g2^4*t^8.47 + t^8.64/(g1^7*g2^13) + (4*t^8.64)/(g1^9*g2^11) + (4*t^8.64)/(g1^11*g2^9) + t^8.64/(g1^13*g2^7) - g1^9*g2^5*t^8.65 - 4*g1^7*g2^7*t^8.65 - g1^5*g2^9*t^8.65 - (3*t^8.82)/(g1^4*g2^6) - (3*t^8.82)/(g1^6*g2^4) - (g1*g2*t^4.24)/y - (g1^2*g2^2*t^5.47)/y - (g1^3*g2^3*t^6.71)/y - t^7.05/(g1^3*g2^5*y) - t^7.05/(g1^5*g2^3*y) + t^7.76/(g1*g2*y) - (2*g1^4*g2^4*t^7.95)/y - (g1^3*g2*t^8.47)/y - (g1*g2^3*t^8.47)/y + t^8.64/(g1^10*g2^10*y) + t^8.82/(g1^3*g2^7*y) + (3*t^8.82)/(g1^5*g2^5*y) + t^8.82/(g1^7*g2^3*y) - g1*g2*t^4.24*y - g1^2*g2^2*t^5.47*y - g1^3*g2^3*t^6.71*y - (t^7.05*y)/(g1^3*g2^5) - (t^7.05*y)/(g1^5*g2^3) + (t^7.76*y)/(g1*g2) - 2*g1^4*g2^4*t^7.95*y - g1^3*g2*t^8.47*y - g1*g2^3*t^8.47*y + (t^8.64*y)/(g1^10*g2^10) + (t^8.82*y)/(g1^3*g2^7) + (3*t^8.82*y)/(g1^5*g2^5) + (t^8.82*y)/(g1^7*g2^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57639 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ 1.2512 1.4516 0.8619 [X:[1.4008, 1.4008], M:[1.0, 1.0], q:[0.3824, 0.3824], qb:[0.2168, 0.6134], phi:[0.4008]] t^2.41 + 2*t^2.99 + 2*t^3. + t^3.61 + 2*t^4.19 + 4*t^4.2 + t^4.34 + 2*t^4.64 + 4*t^5.39 + 2*t^5.41 + t^5.53 + t^5.55 + t^5.56 + 2*t^5.85 + 3*t^5.97 + 4*t^5.99 - 3*t^6. - t^4.2/y - t^5.41/y - t^4.2*y - t^5.41*y detail