Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59068 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.4412 | 1.6238 | 0.8875 | [X:[1.3506], M:[1.026, 0.9481], q:[0.4948, 0.4409], qb:[0.5571, 0.5591], phi:[0.3247]] | [X:[[0, 2]], M:[[0, 3], [0, -6]], q:[[2, 5], [-1, 0]], qb:[[-2, 1], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | ${}$ | -2 | t^2.84 + t^2.99 + t^3. + t^3.08 + t^3.16 + 2*t^3.97 + t^4.05 + t^4.13 + t^4.14 + t^4.94 + t^4.95 + 2*t^5.1 + t^5.11 + t^5.27 + t^5.69 + t^5.84 + t^5.92 + 2*t^5.99 - 2*t^6. + t^6.07 + 2*t^6.08 + 2*t^6.16 + 2*t^6.24 + t^6.32 + t^6.82 + t^6.89 + t^6.9 + t^6.96 + 2*t^6.97 + 5*t^7.05 + t^7.12 + 3*t^7.13 + 4*t^7.21 + t^7.29 + t^7.3 + t^7.38 + t^7.79 - t^7.86 + 5*t^7.94 + 3*t^7.95 + t^8.02 + 7*t^8.1 + t^8.11 + 2*t^8.18 + t^8.19 + 2*t^8.26 + 4*t^8.27 + t^8.34 + t^8.43 + t^8.53 + t^8.69 + t^8.77 - t^8.83 - 3*t^8.84 + t^8.91 + 4*t^8.92 + t^8.98 - 2*t^8.99 + t^8.92/y^2 - t^3.97/y - t^4.95/y - t^6.82/y - (2*t^6.97)/y - t^7.05/y - t^7.14/y - t^7.79/y - t^7.94/y - t^7.95/y - t^8.03/y - t^8.11/y + (2*t^8.84)/y - t^8.92/y + t^8.99/y - t^3.97*y - t^4.95*y - t^6.82*y - 2*t^6.97*y - t^7.05*y - t^7.14*y - t^7.79*y - t^7.94*y - t^7.95*y - t^8.03*y - t^8.11*y + 2*t^8.84*y - t^8.92*y + t^8.99*y + t^8.92*y^2 | t^2.84/g2^6 + (g2*t^2.99)/g1^3 + t^3. + g2^3*t^3.08 + g1^3*g2^5*t^3.16 + t^3.97/g1^3 + t^3.97/g2 + g2^2*t^4.05 + g2^5*t^4.13 + g1^3*g2^4*t^4.14 + t^4.94/(g1^3*g2) + t^4.95/g2^2 + 2*g2^4*t^5.1 + g1^3*g2^3*t^5.11 + g1^3*g2^9*t^5.27 + t^5.69/g2^12 + t^5.84/g2^6 + t^5.92/g2^3 + (g2*t^5.99)/g1^3 + (g2^2*t^5.99)/g1^6 - 2*t^6. + (g2^4*t^6.07)/g1^3 + 2*g2^3*t^6.08 + 2*g2^6*t^6.16 + 2*g1^3*g2^8*t^6.24 + g1^6*g2^10*t^6.32 + t^6.82/g2^7 + t^6.89/(g1^3*g2^3) + t^6.9/g2^4 + (g2*t^6.96)/g1^6 + (2*t^6.97)/g1^3 + 3*g2^2*t^7.05 + (2*g2^3*t^7.05)/g1^3 + (g2^6*t^7.12)/g1^3 + 3*g2^5*t^7.13 + 3*g1^3*g2^7*t^7.21 + g2^8*t^7.21 + g1^3*g2^10*t^7.29 + g1^6*g2^9*t^7.3 + g1^6*g2^12*t^7.38 + t^7.79/g2^8 - t^7.86/(g1^3*g2^4) + (3*t^7.94)/g1^6 + (2*t^7.94)/(g1^3*g2) + (g1^3*t^7.95)/g2^3 + (2*t^7.95)/g2^2 + (g2^2*t^8.02)/g1^3 + 4*g2^4*t^8.1 + (3*g2^5*t^8.1)/g1^3 + g1^3*g2^3*t^8.11 + 2*g2^7*t^8.18 + g1^3*g2^6*t^8.19 + 2*g2^10*t^8.26 + g1^6*g2^8*t^8.27 + 3*g1^3*g2^9*t^8.27 + g1^3*g2^12*t^8.34 + g1^6*g2^14*t^8.43 + t^8.53/g2^18 + t^8.69/g2^12 + t^8.77/g2^9 - t^8.83/(g1^6*g2^4) - (2*t^8.84)/g2^6 - t^8.84/(g1^3*g2^5) + t^8.91/(g1^6*g2) + (3*t^8.92)/g2^3 + t^8.92/(g1^3*g2^2) + (g2^3*t^8.98)/g1^9 - (3*g2*t^8.99)/g1^3 + (g2^2*t^8.99)/g1^6 + t^8.92/(g2^3*y^2) - t^3.97/(g2*y) - t^4.95/(g2^2*y) - t^6.82/(g2^7*y) - t^6.97/(g1^3*y) - t^6.97/(g2*y) - (g2^2*t^7.05)/y - (g1^3*g2^4*t^7.14)/y - t^7.79/(g2^8*y) - t^7.94/(g1^3*g2*y) - t^7.95/(g2^2*y) - (g2*t^8.03)/y - (g1^3*g2^3*t^8.11)/y + t^8.84/(g2^6*y) + t^8.84/(g1^3*g2^5*y) - t^8.92/(g1^3*g2^2*y) + (g2*t^8.99)/(g1^3*y) - (t^3.97*y)/g2 - (t^4.95*y)/g2^2 - (t^6.82*y)/g2^7 - (t^6.97*y)/g1^3 - (t^6.97*y)/g2 - g2^2*t^7.05*y - g1^3*g2^4*t^7.14*y - (t^7.79*y)/g2^8 - (t^7.94*y)/(g1^3*g2) - (t^7.95*y)/g2^2 - g2*t^8.03*y - g1^3*g2^3*t^8.11*y + (t^8.84*y)/g2^6 + (t^8.84*y)/(g1^3*g2^5) - (t^8.92*y)/(g1^3*g2^2) + (g2*t^8.99*y)/g1^3 + (t^8.92*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57476 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4533 | 1.6393 | 0.8865 | [X:[1.3387], M:[1.0081, 0.9839], q:[0.5081, 0.5], qb:[0.5081, 0.5], phi:[0.3306]] | t^2.95 + t^3. + 3*t^3.02 + t^3.99 + 3*t^4.02 + t^4.04 + t^4.98 + 2*t^5.01 + t^5.03 + 2*t^5.52 + 2*t^5.54 + t^5.9 + t^5.95 + t^5.98 - 3*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y | detail |