Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59059 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 0.9355 | 1.1294 | 0.8283 | [X:[1.5564, 1.397, 1.603, 1.4436], M:[1.0, 0.897], q:[0.1135, 0.2729], qb:[0.33, 0.2835], phi:[0.5]] | [X:[[0, -3], [-3, 0], [3, 0], [0, 3]], M:[[0, 0], [-3, 0]], q:[[-1, 1], [2, -2]], qb:[[1, 2], [-2, -1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }X_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }X_{4}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }X_{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${}M_{1}^{2}$ | -1 | 2*t^2.69 + t^2.83 + 2*t^3. + t^3.17 + t^3.48 + 3*t^4.19 + 3*t^4.33 + 2*t^4.5 + 2*t^4.67 + 2*t^4.81 + t^4.98 + 3*t^5.38 + 2*t^5.52 + t^5.66 + 4*t^5.69 + 2*t^5.83 + t^5.86 - t^6. - t^6.14 + t^6.17 - 2*t^6.31 + t^6.34 + t^6.48 + t^6.65 + 6*t^6.88 + 2*t^6.96 + 5*t^7.02 + t^7.05 + 3*t^7.16 + 6*t^7.19 + 4*t^7.33 + 6*t^7.36 + t^7.47 + 5*t^7.5 + t^7.64 + 5*t^7.67 + 2*t^7.81 + 2*t^7.84 + 3*t^7.98 + 4*t^8.07 + t^8.15 + 3*t^8.21 + 2*t^8.35 + 10*t^8.38 + t^8.49 + 7*t^8.52 + 6*t^8.66 - 3*t^8.69 - 3*t^8.83 + 3*t^8.86 - 2*t^8.97 - t^4.5/y - t^6./y - t^7.19/y + t^7.5/y + t^7.81/y + t^8.38/y + (2*t^8.52)/y + t^8.69/y + (2*t^8.86)/y - t^4.5*y - t^6.*y - t^7.19*y + t^7.5*y + t^7.81*y + t^8.38*y + 2*t^8.52*y + t^8.69*y + 2*t^8.86*y | (2*t^2.69)/g1^3 + g2^3*t^2.83 + 2*t^3. + t^3.17/g2^3 + (g1^3*t^3.48)/g2^3 + (3*t^4.19)/g1^3 + 3*g2^3*t^4.33 + 2*t^4.5 + (2*t^4.67)/g2^3 + 2*g1^3*t^4.81 + (g1^3*t^4.98)/g2^3 + (3*t^5.38)/g1^6 + (2*g2^3*t^5.52)/g1^3 + g2^6*t^5.66 + (4*t^5.69)/g1^3 + 2*g2^3*t^5.83 + t^5.86/(g1^3*g2^3) - t^6. - g1^3*g2^3*t^6.14 + t^6.17/g2^3 - 2*g1^3*t^6.31 + t^6.34/g2^6 + (g1^3*t^6.48)/g2^3 + (g1^3*t^6.65)/g2^6 + (6*t^6.88)/g1^6 + (2*g1^6*t^6.96)/g2^6 + (5*g2^3*t^7.02)/g1^3 + t^7.05/(g1^6*g2^3) + 3*g2^6*t^7.16 + (6*t^7.19)/g1^3 + 4*g2^3*t^7.33 + (6*t^7.36)/(g1^3*g2^3) + g1^3*g2^6*t^7.47 + 5*t^7.5 + g1^3*g2^3*t^7.64 + (5*t^7.67)/g2^3 + 2*g1^3*t^7.81 + (2*t^7.84)/g2^6 + (3*g1^3*t^7.98)/g2^3 + (4*t^8.07)/g1^9 + (g1^3*t^8.15)/g2^6 + (3*g2^3*t^8.21)/g1^6 + (2*g2^6*t^8.35)/g1^3 + (10*t^8.38)/g1^6 + g2^9*t^8.49 + (7*g2^3*t^8.52)/g1^3 + 6*g2^6*t^8.66 - (3*t^8.69)/g1^3 - 3*g2^3*t^8.83 + (3*t^8.86)/(g1^3*g2^3) - 2*g1^3*g2^6*t^8.97 - t^4.5/y - t^6./y - t^7.19/(g1^3*y) + t^7.5/y + (g1^3*t^7.81)/y + t^8.38/(g1^6*y) + (2*g2^3*t^8.52)/(g1^3*y) + t^8.69/(g1^3*y) + (2*t^8.86)/(g1^3*g2^3*y) - t^4.5*y - t^6.*y - (t^7.19*y)/g1^3 + t^7.5*y + g1^3*t^7.81*y + (t^8.38*y)/g1^6 + (2*g2^3*t^8.52*y)/g1^3 + (t^8.69*y)/g1^3 + (2*t^8.86*y)/(g1^3*g2^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57692 | SU3adj1nf2 | ${}\phi_{1}^{4}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }q_{2}\tilde{q}_{1}X_{2}$ + ${ }q_{1}\tilde{q}_{2}X_{3}$ + ${ }q_{2}\tilde{q}_{2}X_{4}$ + ${ }M_{1}\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}^{2}$ | 0.9277 | 1.1152 | 0.8319 | [X:[1.5657, 1.4343, 1.5657, 1.4343], M:[1.0], q:[0.1228, 0.2543], qb:[0.3114, 0.3114], phi:[0.5]] | 2*t^2.8 + 2*t^3. + 2*t^3.2 + t^3.39 + 6*t^4.3 + 2*t^4.5 + 4*t^4.7 + t^4.89 + 3*t^5.61 + 4*t^5.8 - t^4.5/y - t^6./y - t^4.5*y - t^6.*y | detail |