Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
59057 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4829 | 1.7065 | 0.869 | [X:[1.3426], M:[0.6694, 0.6974], q:[0.5745, 0.5224], qb:[0.4516, 0.4795], phi:[0.3287]] | [X:[[0, 2]], M:[[3, -22], [3, -16]], q:[[2, -11], [-4, 23]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}$ | -2 | t^2.01 + t^2.09 + t^2.92 + t^2.96 + t^3.01 + t^3.08 + t^3.16 + t^4.02 + t^4.03 + t^4.06 + t^4.1 + t^4.15 + t^4.18 + t^4.89 + t^4.93 + t^4.97 + t^4.98 + 2*t^5.01 + 2*t^5.05 + t^5.09 + t^5.1 + 2*t^5.13 + 2*t^5.17 + t^5.22 + t^5.25 + t^5.84 + t^5.88 + t^5.93 + t^5.96 - 2*t^6. + t^6.01 + t^6.03 + 2*t^6.04 + t^6.07 + t^6.08 + t^6.11 + 3*t^6.12 + 2*t^6.16 + t^6.17 + t^6.19 + t^6.2 + 2*t^6.24 + t^6.28 + t^6.32 + t^6.94 + t^6.95 + t^6.97 + 2*t^6.99 + 4*t^7.02 + t^7.03 + 2*t^7.06 + t^7.07 + t^7.09 + 5*t^7.11 + 4*t^7.14 + t^7.15 + 2*t^7.18 + 3*t^7.19 + 4*t^7.23 + 2*t^7.26 + t^7.27 + 2*t^7.31 + t^7.35 + t^7.66 + t^7.82 + t^7.85 + 2*t^7.9 + t^7.94 + 2*t^7.97 + t^7.98 - t^8.01 + t^8.02 + t^8.03 + 2*t^8.04 + 3*t^8.06 + t^8.08 + t^8.09 + t^8.1 + t^8.12 + 5*t^8.13 + 3*t^8.14 + 2*t^8.16 + 3*t^8.18 + t^8.2 + 6*t^8.21 + t^8.22 + 3*t^8.25 + t^8.26 + t^8.28 + 4*t^8.3 + 3*t^8.33 + t^8.37 + t^8.38 + t^8.42 - t^8.68 + t^8.8 - t^8.84 + t^8.85 + t^8.89 - 3*t^8.92 + t^8.93 + t^8.95 + t^8.97 + t^8.98 - t^8.99 + t^8.96/y^2 - t^8.99/y^2 - t^3.99/y - t^4.97/y - t^5.99/y - t^6.08/y - t^6.91/y - t^6.94/y - t^6.98/y - t^6.99/y - (2*t^7.06)/y + t^7.1/y - t^7.15/y + t^7.97/y - t^8./y + (2*t^8.01)/y + t^8.1/y - t^8.13/y + t^8.17/y + t^8.25/y + t^8.88/y - t^8.92/y + t^8.93/y - t^8.95/y + t^8.96/y - t^8.99/y - t^3.99*y - t^4.97*y - t^5.99*y - t^6.08*y - t^6.91*y - t^6.94*y - t^6.98*y - t^6.99*y - 2*t^7.06*y + t^7.1*y - t^7.15*y + t^7.97*y - t^8.*y + 2*t^8.01*y + t^8.1*y - t^8.13*y + t^8.17*y + t^8.25*y + t^8.88*y - t^8.92*y + t^8.93*y - t^8.95*y + t^8.96*y - t^8.99*y + t^8.96*y^2 - t^8.99*y^2 | (g1^3*t^2.01)/g2^22 + (g1^3*t^2.09)/g2^16 + (g2^17*t^2.92)/g1^3 + t^2.96/g2^3 + (g2^23*t^3.01)/g1^3 + (g1^3*t^3.08)/g2^17 + (g1^3*t^3.16)/g2^11 + (g1^6*t^4.02)/g2^44 + g2^2*t^4.03 + (g1^3*t^4.06)/g2^18 + (g1^6*t^4.1)/g2^38 + (g1^3*t^4.15)/g2^12 + (g1^6*t^4.18)/g2^32 + (g2^15*t^4.89)/g1^3 + t^4.93/g2^5 + (g1^3*t^4.97)/g2^25 + (g2^21*t^4.98)/g1^3 + 2*g2*t^5.01 + (2*g1^3*t^5.05)/g2^19 + (g1^6*t^5.09)/g2^39 + g2^7*t^5.1 + (2*g1^3*t^5.13)/g2^13 + (2*g1^6*t^5.17)/g2^33 + (g1^3*t^5.22)/g2^7 + (g1^6*t^5.25)/g2^27 + (g2^34*t^5.84)/g1^6 + (g2^14*t^5.88)/g1^3 + (g2^40*t^5.93)/g1^6 + (g2^20*t^5.96)/g1^3 - 2*t^6. + (g2^46*t^6.01)/g1^6 + (g1^9*t^6.03)/g2^66 + (2*g1^3*t^6.04)/g2^20 + (g1^6*t^6.07)/g2^40 + g2^6*t^6.08 + (g1^9*t^6.11)/g2^60 + (3*g1^3*t^6.12)/g2^14 + (2*g1^6*t^6.16)/g2^34 + g2^12*t^6.17 + (g1^9*t^6.19)/g2^54 + (g1^3*t^6.2)/g2^8 + (2*g1^6*t^6.24)/g2^28 + (g1^9*t^6.28)/g2^48 + (g1^6*t^6.32)/g2^22 + (g1^3*t^6.94)/g2^27 + (g2^19*t^6.95)/g1^3 + (g1^6*t^6.97)/g2^47 + (2*t^6.99)/g2 + (4*g1^3*t^7.02)/g2^21 + (g2^25*t^7.03)/g1^3 + (2*g1^6*t^7.06)/g2^41 + g2^5*t^7.07 + (g1^9*t^7.09)/g2^61 + (5*g1^3*t^7.11)/g2^15 + (4*g1^6*t^7.14)/g2^35 + g2^11*t^7.15 + (2*g1^9*t^7.18)/g2^55 + (3*g1^3*t^7.19)/g2^9 + (4*g1^6*t^7.23)/g2^29 + (2*g1^9*t^7.26)/g2^49 + (g1^3*t^7.27)/g2^3 + (2*g1^6*t^7.31)/g2^23 + (g1^9*t^7.35)/g2^43 + (g2^66*t^7.66)/g1^12 + (g2^32*t^7.82)/g1^6 + (g2^12*t^7.85)/g1^3 + (2*g2^38*t^7.9)/g1^6 + (g2^18*t^7.94)/g1^3 + (2*t^7.97)/g2^2 + (g2^44*t^7.98)/g1^6 - (g1^3*t^8.01)/g2^22 + (g2^24*t^8.02)/g1^3 + (g1^12*t^8.03)/g2^88 + (2*g1^6*t^8.04)/g2^42 + 3*g2^4*t^8.06 + (g1^9*t^8.08)/g2^62 + (g1^3*t^8.09)/g2^16 + (g2^30*t^8.1)/g1^3 + (g1^12*t^8.12)/g2^82 + (5*g1^6*t^8.13)/g2^36 + 3*g2^10*t^8.14 + (2*g1^9*t^8.16)/g2^56 + (3*g1^3*t^8.18)/g2^10 + (g1^12*t^8.2)/g2^76 + (6*g1^6*t^8.21)/g2^30 + g2^16*t^8.22 + (3*g1^9*t^8.25)/g2^50 + (g1^3*t^8.26)/g2^4 + (g1^12*t^8.28)/g2^70 + (4*g1^6*t^8.3)/g2^24 + (3*g1^9*t^8.33)/g2^44 + (g1^12*t^8.37)/g2^64 + (g1^6*t^8.38)/g2^18 + (g1^9*t^8.42)/g2^38 - (g2^45*t^8.68)/g1^9 + (g2^31*t^8.8)/g1^6 - (g2^11*t^8.84)/g1^3 + (g2^57*t^8.85)/g1^9 + (g2^37*t^8.89)/g1^6 - (3*g2^17*t^8.92)/g1^3 + (g2^63*t^8.93)/g1^9 + (g1^6*t^8.95)/g2^49 + (g2^43*t^8.97)/g1^6 + (g1^9*t^8.98)/g2^69 - (g1^3*t^8.99)/g2^23 + t^8.96/(g2^3*y^2) - (g1^3*t^8.99)/(g2^23*y^2) - t^3.99/(g2*y) - t^4.97/(g2^2*y) - (g1^3*t^5.99)/(g2^23*y) - (g1^3*t^6.08)/(g2^17*y) - (g2^16*t^6.91)/(g1^3*y) - t^6.94/(g2^4*y) - (g1^3*t^6.98)/(g2^24*y) - (g2^22*t^6.99)/(g1^3*y) - (2*g1^3*t^7.06)/(g2^18*y) + (g1^6*t^7.1)/(g2^38*y) - (g1^3*t^7.15)/(g2^12*y) + (g1^3*t^7.97)/(g2^25*y) - (g1^6*t^8.)/(g2^45*y) + (2*g2*t^8.01)/y + (g2^7*t^8.1)/y - (g1^3*t^8.13)/(g2^13*y) + (g1^6*t^8.17)/(g2^33*y) + (g1^6*t^8.25)/(g2^27*y) + (g2^14*t^8.88)/(g1^3*y) - t^8.92/(g2^6*y) + (g2^40*t^8.93)/(g1^6*y) - (g1^3*t^8.95)/(g2^26*y) + (g2^20*t^8.96)/(g1^3*y) - (g1^6*t^8.99)/(g2^46*y) - (t^3.99*y)/g2 - (t^4.97*y)/g2^2 - (g1^3*t^5.99*y)/g2^23 - (g1^3*t^6.08*y)/g2^17 - (g2^16*t^6.91*y)/g1^3 - (t^6.94*y)/g2^4 - (g1^3*t^6.98*y)/g2^24 - (g2^22*t^6.99*y)/g1^3 - (2*g1^3*t^7.06*y)/g2^18 + (g1^6*t^7.1*y)/g2^38 - (g1^3*t^7.15*y)/g2^12 + (g1^3*t^7.97*y)/g2^25 - (g1^6*t^8.*y)/g2^45 + 2*g2*t^8.01*y + g2^7*t^8.1*y - (g1^3*t^8.13*y)/g2^13 + (g1^6*t^8.17*y)/g2^33 + (g1^6*t^8.25*y)/g2^27 + (g2^14*t^8.88*y)/g1^3 - (t^8.92*y)/g2^6 + (g2^40*t^8.93*y)/g1^6 - (g1^3*t^8.95*y)/g2^26 + (g2^20*t^8.96*y)/g1^3 - (g1^6*t^8.99*y)/g2^46 + (t^8.96*y^2)/g2^3 - (g1^3*t^8.99*y^2)/g2^23 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57694 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4624 | 1.6668 | 0.8773 | [X:[1.3429], M:[0.6714], q:[0.5762, 0.519], qb:[0.4524, 0.481], phi:[0.3286]] | t^2.01 + t^2.91 + t^2.96 + t^3. + t^3.09 + t^3.17 + t^3.9 + 2*t^4.03 + t^4.07 + t^4.16 + t^4.89 + t^4.93 + 2*t^4.97 + t^5.01 + t^5.06 + t^5.1 + 2*t^5.14 + t^5.19 + t^5.23 + t^5.83 + t^5.87 + 2*t^5.91 + t^5.96 - t^6. - t^3.99/y - t^4.97/y - t^6./y - t^3.99*y - t^4.97*y - t^6.*y | detail |