Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59037 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ 1.4657 1.672 0.8766 [X:[1.3425], M:[0.9572, 0.6865], q:[0.5856, 0.5], qb:[0.4572, 0.4848], phi:[0.3287]] [X:[[0, 2]], M:[[-3, 17], [3, -22]], q:[[2, -11], [-4, 23]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{6}$ ${}$ -3 t^2.06 + 2*t^2.87 + t^2.95 + t^2.96 + t^3.21 + t^3.86 + t^4.03 + t^4.11 + t^4.12 + t^4.2 + t^4.84 + 3*t^4.93 + t^5.01 + t^5.02 + t^5.1 + 2*t^5.18 + 2*t^5.27 + 3*t^5.74 + 4*t^5.83 + 2*t^5.91 + t^5.92 - 3*t^6. + t^6.08 + t^6.09 + 4*t^6.17 + t^6.18 + t^6.25 + t^6.42 + 2*t^6.73 + t^6.81 + t^6.82 + 2*t^6.9 + t^6.98 + 4*t^6.99 + 5*t^7.07 + t^7.08 + t^7.15 + 3*t^7.16 + 3*t^7.24 + t^7.32 + 2*t^7.33 + t^7.41 + t^7.46 + 3*t^7.72 + 6*t^7.8 + t^7.88 + 3*t^7.89 + 2*t^7.97 + t^7.98 + 2*t^8.06 + 7*t^8.14 + t^8.15 + t^8.22 + 5*t^8.23 + t^8.24 + t^8.31 + 2*t^8.39 + 2*t^8.48 - t^8.53 + 3*t^8.61 + 7*t^8.7 + 5*t^8.78 + t^8.79 + t^8.86 - 5*t^8.87 + t^8.88 - 2*t^8.95 + t^8.96 + t^8.96/y^2 - t^3.99/y - t^4.97/y - t^6.05/y - (2*t^6.86)/y - (2*t^6.94)/y - t^7.03/y - t^7.2/y - (2*t^7.84)/y + t^7.93/y + t^8.01/y + t^8.02/y - t^8.1/y - t^8.18/y + t^8.27/y + t^8.74/y + (3*t^8.83)/y + t^8.91/y - t^8.92/y - t^3.99*y - t^4.97*y - t^6.05*y - 2*t^6.86*y - 2*t^6.94*y - t^7.03*y - t^7.2*y - 2*t^7.84*y + t^7.93*y + t^8.01*y + t^8.02*y - t^8.1*y - t^8.18*y + t^8.27*y + t^8.74*y + 3*t^8.83*y + t^8.91*y - t^8.92*y + t^8.96*y^2 (g1^3*t^2.06)/g2^22 + (2*g2^17*t^2.87)/g1^3 + (g2^23*t^2.95)/g1^3 + t^2.96/g2^3 + (g1^3*t^3.21)/g2^11 + (g2^16*t^3.86)/g1^3 + g2^2*t^4.03 + (g1^3*t^4.11)/g2^18 + (g1^6*t^4.12)/g2^44 + (g1^3*t^4.2)/g2^12 + (g2^15*t^4.84)/g1^3 + (2*t^4.93)/g2^5 + (g2^21*t^4.93)/g1^3 + g2*t^5.01 + (g1^3*t^5.02)/g2^25 + (g1^3*t^5.1)/g2^19 + (2*g1^3*t^5.18)/g2^13 + (g1^6*t^5.27)/g2^33 + (g1^3*t^5.27)/g2^7 + (3*g2^34*t^5.74)/g1^6 + (2*g2^14*t^5.83)/g1^3 + (2*g2^40*t^5.83)/g1^6 + (g2^20*t^5.91)/g1^3 + (g2^46*t^5.91)/g1^6 + t^5.92/g2^6 - 3*t^6. + g2^6*t^6.08 + (g1^3*t^6.09)/g2^20 + (g1^6*t^6.17)/g2^40 + (2*g1^3*t^6.17)/g2^14 + g2^12*t^6.17 + (g1^9*t^6.18)/g2^66 + (g1^3*t^6.25)/g2^8 + (g1^6*t^6.42)/g2^22 + (2*g2^33*t^6.73)/g1^6 + (g2^39*t^6.81)/g1^6 + (g2^13*t^6.82)/g1^3 + (2*g2^19*t^6.9)/g1^3 + (g2^25*t^6.98)/g1^3 + (2*g1^3*t^6.99)/g2^27 + (2*t^6.99)/g2 + (3*g1^3*t^7.07)/g2^21 + 2*g2^5*t^7.07 + (g1^6*t^7.08)/g2^47 + g2^11*t^7.15 + (g1^6*t^7.16)/g2^41 + (2*g1^3*t^7.16)/g2^15 + (g1^6*t^7.24)/g2^35 + (2*g1^3*t^7.24)/g2^9 + (g1^3*t^7.32)/g2^3 + (g1^9*t^7.33)/g2^55 + (g1^6*t^7.33)/g2^29 + (g1^6*t^7.41)/g2^23 + (g2^66*t^7.46)/g1^12 + (3*g2^32*t^7.72)/g1^6 + (3*g2^12*t^7.8)/g1^3 + (3*g2^38*t^7.8)/g1^6 + (g2^44*t^7.88)/g1^6 + t^7.89/g2^8 + (2*g2^18*t^7.89)/g1^3 + (2*t^7.97)/g2^2 + (g1^3*t^7.98)/g2^28 - (2*g1^3*t^8.06)/g2^22 + 4*g2^4*t^8.06 + (3*g1^3*t^8.14)/g2^16 + 4*g2^10*t^8.14 + (g1^6*t^8.15)/g2^42 + g2^16*t^8.22 + (g1^9*t^8.23)/g2^62 + (2*g1^6*t^8.23)/g2^36 + (2*g1^3*t^8.23)/g2^10 + (g1^12*t^8.24)/g2^88 + (g1^6*t^8.31)/g2^30 + (2*g1^6*t^8.39)/g2^24 + (g1^9*t^8.48)/g2^44 + (g1^6*t^8.48)/g2^18 - (g2^45*t^8.53)/g1^9 + (3*g2^51*t^8.61)/g1^9 + (4*g2^31*t^8.7)/g1^6 + (3*g2^57*t^8.7)/g1^9 + (3*g2^37*t^8.78)/g1^6 + (2*g2^63*t^8.78)/g1^9 + (g2^11*t^8.79)/g1^3 + (g2^69*t^8.86)/g1^9 - (6*g2^17*t^8.87)/g1^3 + (g2^43*t^8.87)/g1^6 + t^8.88/g2^9 - (2*g2^23*t^8.95)/g1^3 + t^8.96/g2^3 + t^8.96/(g2^3*y^2) - t^3.99/(g2*y) - t^4.97/(g2^2*y) - (g1^3*t^6.05)/(g2^23*y) - (2*g2^16*t^6.86)/(g1^3*y) - t^6.94/(g2^4*y) - (g2^22*t^6.94)/(g1^3*y) - (g1^3*t^7.03)/(g2^24*y) - (g1^3*t^7.2)/(g2^12*y) - (2*g2^15*t^7.84)/(g1^3*y) + t^7.93/(g2^5*y) + (g2*t^8.01)/y + (g1^3*t^8.02)/(g2^25*y) - (g1^6*t^8.1)/(g2^45*y) - (g1^3*t^8.18)/(g2^13*y) + (g1^6*t^8.27)/(g2^33*y) + (g2^34*t^8.74)/(g1^6*y) + (g2^14*t^8.83)/(g1^3*y) + (2*g2^40*t^8.83)/(g1^6*y) + (g2^20*t^8.91)/(g1^3*y) - t^8.92/(g2^6*y) - (t^3.99*y)/g2 - (t^4.97*y)/g2^2 - (g1^3*t^6.05*y)/g2^23 - (2*g2^16*t^6.86*y)/g1^3 - (t^6.94*y)/g2^4 - (g2^22*t^6.94*y)/g1^3 - (g1^3*t^7.03*y)/g2^24 - (g1^3*t^7.2*y)/g2^12 - (2*g2^15*t^7.84*y)/g1^3 + (t^7.93*y)/g2^5 + g2*t^8.01*y + (g1^3*t^8.02*y)/g2^25 - (g1^6*t^8.1*y)/g2^45 - (g1^3*t^8.18*y)/g2^13 + (g1^6*t^8.27*y)/g2^33 + (g2^34*t^8.74*y)/g1^6 + (g2^14*t^8.83*y)/g1^3 + (2*g2^40*t^8.83*y)/g1^6 + (g2^20*t^8.91*y)/g1^3 - (t^8.92*y)/g2^6 + (t^8.96*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57687 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }\phi_{1}^{2}X_{1}$ 1.445 1.6324 0.8852 [X:[1.3412], M:[0.955], q:[0.5869, 0.4968], qb:[0.4581, 0.4816], phi:[0.3294]] 2*t^2.86 + t^2.94 + t^2.96 + t^3.21 + t^3.85 + t^3.92 + t^4.02 + t^4.12 + t^4.19 + t^4.84 + t^4.91 + t^5.11 + 2*t^5.18 + t^5.25 + 3*t^5.73 + 2*t^5.8 + 2*t^5.83 + t^5.87 + t^5.9 - 3*t^6. - t^3.99/y - t^4.98/y - t^3.99*y - t^4.98*y detail