Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59029 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4759 1.69 0.8733 [X:[1.3221], M:[0.9832, 0.6759, 0.9832], q:[0.5095, 0.4738], qb:[0.5074, 0.4757], phi:[0.3389]] [X:[[0, 0, 2]], M:[[0, 0, 3], [1, -1, 4], [0, 0, 3]], q:[[-1, 0, -3], [0, -1, 9]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}X_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ ${}$ -4 t^2.03 + t^2.85 + t^2.94 + 2*t^2.95 + t^2.96 + t^3.87 + t^3.96 + t^3.97 + t^4.06 + t^4.07 + 2*t^4.88 + t^4.97 + 4*t^4.98 + t^4.99 + t^5.08 + 2*t^5.39 + 2*t^5.49 + t^5.7 + t^5.79 + 3*t^5.8 + 3*t^5.89 + 5*t^5.9 + t^5.91 + 2*t^5.99 - 4*t^6. + t^6.08 - t^6.11 + t^6.4 + t^6.41 + 2*t^6.51 + t^6.71 + 5*t^6.81 + t^6.82 + 2*t^6.9 + 3*t^6.91 + 4*t^6.92 + 4*t^7. + 2*t^7.01 + t^7.02 - t^7.12 + t^7.31 + t^7.33 + 2*t^7.42 + 2*t^7.52 + t^7.62 + t^7.64 + t^7.72 + 2*t^7.73 + t^7.82 + 8*t^7.83 + 2*t^7.84 + t^7.91 + 4*t^7.92 + 10*t^7.93 + 2*t^7.94 + 2*t^8.02 - 2*t^8.03 + t^8.04 + t^8.11 - t^8.13 - t^8.14 + 2*t^8.24 + t^8.33 + 6*t^8.34 + t^8.35 + t^8.43 + 3*t^8.44 - 3*t^8.54 + 2*t^8.65 + 3*t^8.74 + 6*t^8.75 + t^8.76 + t^8.83 + 10*t^8.84 + 4*t^8.85 + t^8.86 + t^8.87 + 2*t^8.93 + 3*t^8.94 - 5*t^8.95 - 5*t^8.96 - t^4.02/y - t^5.03/y - t^6.04/y - t^6.87/y - t^6.96/y - (3*t^6.97)/y - t^7.06/y + t^7.97/y - t^8.07/y + t^8.79/y + (3*t^8.8)/y + (2*t^8.89)/y + (3*t^8.9)/y - (2*t^8.99)/y - t^4.02*y - t^5.03*y - t^6.04*y - t^6.87*y - t^6.96*y - 3*t^6.97*y - t^7.06*y + t^7.97*y - t^8.07*y + t^8.79*y + 3*t^8.8*y + 2*t^8.89*y + 3*t^8.9*y - 2*t^8.99*y (g1*g3^4*t^2.03)/g2 + g3^9*t^2.85 + (g1*g3^9*t^2.94)/g2 + 2*g3^3*t^2.95 + (g2*t^2.96)/(g1*g3^3) + g3^8*t^3.87 + (g1*g3^8*t^3.96)/g2 + g3^2*t^3.97 + (g1^2*g3^8*t^4.06)/g2^2 + t^4.07/g3^4 + g3^7*t^4.88 + (g1*g3^13*t^4.88)/g2 + (g1^2*g3^13*t^4.97)/g2^2 + g3*t^4.98 + (3*g1*g3^7*t^4.98)/g2 + (g2*t^4.99)/(g1*g3^5) + t^5.08/g3^5 + (g1*g2^2*t^5.39)/g3 + (g3^14*t^5.39)/(g1*g2^2) + (g1^2*g2*t^5.49)/g3 + (g3^2*t^5.49)/(g1^2*g2) + g3^18*t^5.7 + (g1*g3^18*t^5.79)/g2 + (g2*g3^6*t^5.8)/g1 + 2*g3^12*t^5.8 + (2*g1*g3^12*t^5.89)/g2 + (g1^2*g3^18*t^5.89)/g2^2 + (g2*t^5.9)/g1 + 4*g3^6*t^5.9 + (g2^2*t^5.91)/(g1^2*g3^6) + (g1*g3^6*t^5.99)/g2 + (g1^2*g3^12*t^5.99)/g2^2 - 4*t^6. + (g1^3*g3^12*t^6.08)/g2^3 - (g2*t^6.11)/(g1*g3^12) + (g3^13*t^6.4)/(g1*g2^2) + (g1*g2^2*t^6.41)/g3^2 + (g1^2*g2*t^6.51)/g3^2 + (g3*t^6.51)/(g1^2*g2) + g3^17*t^6.71 + 3*g3^11*t^6.81 + (2*g1*g3^17*t^6.81)/g2 + (g2*g3^5*t^6.82)/g1 + (2*g1^2*g3^17*t^6.9)/g2^2 + (3*g1*g3^11*t^6.91)/g2 + 4*g3^5*t^6.92 + (3*g1^2*g3^11*t^7.)/g2^2 + (g1^3*g3^17*t^7.)/g2^3 + (2*g1*g3^5*t^7.01)/g2 + (g2*t^7.02)/(g1*g3^7) - (g2*t^7.12)/(g1*g3^13) + (g3^24*t^7.31)/g2^3 + (g2^3*t^7.33)/g3^3 + (g3^12*t^7.42)/(g1*g2^2) + (g3^18*t^7.42)/g2^3 + (g1*g2^2*t^7.43)/g3^3 - (g3^6*t^7.43)/(g1^2*g2) + (g1^2*g2*t^7.52)/g3^3 + g1^3*g3^3*t^7.52 + t^7.53/(g1^2*g2) - (g1*g2^2*t^7.53)/g3^9 + (g1^3*t^7.62)/g3^3 + t^7.64/(g1^3*g3^12) + (g1*g3^22*t^7.72)/g2 + 2*g3^16*t^7.73 + (g1^2*g3^22*t^7.82)/g2^2 + 3*g3^10*t^7.83 + (5*g1*g3^16*t^7.83)/g2 + (2*g2*g3^4*t^7.84)/g1 + (g1^3*g3^22*t^7.91)/g2^3 + (4*g1^2*g3^16*t^7.92)/g2^2 + 5*g3^4*t^7.93 + (5*g1*g3^10*t^7.93)/g2 + (g2^2*t^7.94)/(g1^2*g3^8) + (g2*t^7.94)/(g1*g3^2) + (g1^2*g3^10*t^8.02)/g2^2 + (g1^3*g3^16*t^8.02)/g2^3 - (2*g1*g3^4*t^8.03)/g2 + (g2*t^8.04)/(g1*g3^8) + (g1^4*g3^16*t^8.11)/g2^4 - (g1*t^8.13)/(g2*g3^2) - (g2*t^8.14)/(g1*g3^14) + g1*g2^2*g3^8*t^8.24 + (g3^23*t^8.24)/(g1*g2^2) + (g3^23*t^8.33)/g2^3 + g1*g2^2*g3^2*t^8.34 + 2*g1^2*g2*g3^8*t^8.34 + (2*g3^11*t^8.34)/(g1^2*g2) + (g3^17*t^8.34)/(g1*g2^2) + (g2^3*t^8.35)/g3^4 + g1^3*g3^8*t^8.43 + (g1*g2^2*t^8.44)/g3^4 + g1^2*g2*g3^2*t^8.44 + (g3^11*t^8.44)/(g1*g2^2) - (g2^3*t^8.45)/g3^10 + t^8.45/(g1^3*g3) - (2*g1*g2^2*t^8.54)/g3^10 - (g3^5*t^8.54)/(g1*g2^2) - t^8.55/(g1^3*g3^7) + g3^27*t^8.55 - (g1^2*g2*t^8.64)/g3^10 + (g1*g3^27*t^8.64)/g2 - t^8.65/(g1^2*g2*g3^7) + (g2*g3^15*t^8.65)/g1 + 2*g3^21*t^8.65 + (2*g1*g3^21*t^8.74)/g2 + (g1^2*g3^27*t^8.74)/g2^2 + (g2*g3^9*t^8.75)/g1 + 5*g3^15*t^8.75 + (g2^2*g3^3*t^8.76)/g1^2 + (g1^3*g3^27*t^8.83)/g2^3 + (7*g1*g3^15*t^8.84)/g2 + (3*g1^2*g3^21*t^8.84)/g2^2 + (3*g2*g3^3*t^8.85)/g1 + g3^9*t^8.85 + (g2^2*t^8.86)/(g1^2*g3^3) + (g2^3*t^8.87)/(g1^3*g3^9) + (2*g1^3*g3^21*t^8.93)/g2^3 - (g1*g3^9*t^8.94)/g2 + (4*g1^2*g3^15*t^8.94)/g2^2 - 5*g3^3*t^8.95 - (5*g2*t^8.96)/(g1*g3^3) - t^4.02/(g3*y) - t^5.03/(g3^2*y) - (g1*g3^3*t^6.04)/(g2*y) - (g3^8*t^6.87)/y - (g1*g3^8*t^6.96)/(g2*y) - (g2*t^6.97)/(g1*g3^4*y) - (2*g3^2*t^6.97)/y - (g1*g3^2*t^7.06)/(g2*y) - (g3^7*t^7.88)/y + (g1*g3^13*t^7.88)/(g2*y) + (g1^2*g3^13*t^7.97)/(g2^2*y) - (g3*t^7.98)/y + (g1*g3^7*t^7.98)/(g2*y) - (g1^2*g3^7*t^8.07)/(g2^2*y) + (g1*g3^18*t^8.79)/(g2*y) + (g2*g3^6*t^8.8)/(g1*y) + (2*g3^12*t^8.8)/y + (2*g1*g3^12*t^8.89)/(g2*y) + (2*g2*t^8.9)/(g1*y) + (g3^6*t^8.9)/y - (2*g1*g3^6*t^8.99)/(g2*y) - (t^4.02*y)/g3 - (t^5.03*y)/g3^2 - (g1*g3^3*t^6.04*y)/g2 - g3^8*t^6.87*y - (g1*g3^8*t^6.96*y)/g2 - (g2*t^6.97*y)/(g1*g3^4) - 2*g3^2*t^6.97*y - (g1*g3^2*t^7.06*y)/g2 - g3^7*t^7.88*y + (g1*g3^13*t^7.88*y)/g2 + (g1^2*g3^13*t^7.97*y)/g2^2 - g3*t^7.98*y + (g1*g3^7*t^7.98*y)/g2 - (g1^2*g3^7*t^8.07*y)/g2^2 + (g1*g3^18*t^8.79*y)/g2 + (g2*g3^6*t^8.8*y)/g1 + 2*g3^12*t^8.8*y + (2*g1*g3^12*t^8.89*y)/g2 + (2*g2*t^8.9*y)/g1 + g3^6*t^8.9*y - (2*g1*g3^6*t^8.99*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57745 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4747 1.6859 0.8747 [X:[1.3265], M:[0.9898, 0.6722], q:[0.5057, 0.4841], qb:[0.5045, 0.4853], phi:[0.3367]] t^2.02 + t^2.91 + 3*t^2.97 + t^3.03 + t^3.92 + 2*t^3.98 + t^4.03 + t^4.04 + t^4.92 + t^4.93 + t^4.98 + 4*t^4.99 + 2*t^5.05 + t^5.43 + t^5.44 + t^5.49 + t^5.5 + t^5.82 + t^5.87 + 2*t^5.88 + t^5.93 + 4*t^5.94 + t^5.95 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail