Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
59010 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4585 1.6676 0.8746 [X:[], M:[0.997], q:[0.4367, 0.4488], qb:[0.5572, 0.5512], phi:[0.3343]] [X:[], M:[[9]], q:[[23], [-13]], qb:[[-5], [13]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$ ${}$ -1 t^2.01 + t^2.96 + t^2.98 + t^2.99 + t^3. + t^3.02 + t^3.97 + t^3.98 + t^4. + t^4.01 + t^4.02 + 3*t^4.97 + 2*t^4.99 + t^5. + 3*t^5.01 + 2*t^5.02 + t^5.93 + 2*t^5.95 + t^5.96 + 3*t^5.97 + 3*t^5.98 + 2*t^5.99 - t^6. + 3*t^6.01 + t^6.02 + t^6.03 + t^6.93 + t^6.94 + 2*t^6.95 + t^6.96 + 2*t^6.97 + 8*t^6.98 + 3*t^6.99 + t^7. + 5*t^7.01 + t^7.02 + 2*t^7.03 + t^7.05 + 4*t^7.93 + 4*t^7.95 + 2*t^7.96 + 7*t^7.97 + 2*t^7.98 + 8*t^7.99 + 3*t^8. + 2*t^8.01 + 6*t^8.02 + t^8.03 + t^8.89 + t^8.91 + t^8.92 + t^8.93 + 5*t^8.94 + 10*t^8.95 - t^8.96 + 10*t^8.97 + 2*t^8.98 + 6*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.97/y - t^6.98/y - t^6.99/y - t^7./y - t^7.01/y - t^7.02/y + t^8./y - t^8.02/y + (2*t^8.95)/y + t^8.96/y + (2*t^8.98)/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.97*y - t^6.98*y - t^6.99*y - t^7.*y - t^7.01*y - t^7.02*y + t^8.*y - t^8.02*y + 2*t^8.95*y + t^8.96*y + 2*t^8.98*y t^2.01/g1^6 + g1^36*t^2.96 + g1^18*t^2.98 + g1^9*t^2.99 + t^3. + t^3.02/g1^18 + g1^33*t^3.97 + g1^15*t^3.98 + t^4./g1^3 + t^4.01/g1^12 + t^4.02/g1^21 + 3*g1^30*t^4.97 + 2*g1^12*t^4.99 + g1^3*t^5. + (3*t^5.01)/g1^6 + (2*t^5.02)/g1^24 + g1^72*t^5.93 + g1^45*t^5.95 + g1^54*t^5.95 + g1^36*t^5.96 + 3*g1^27*t^5.97 + 3*g1^18*t^5.98 + 2*g1^9*t^5.99 - t^6. + (3*t^6.01)/g1^9 + t^6.02/g1^18 + t^6.03/g1^27 + g1^69*t^6.93 + g1^60*t^6.94 + 2*g1^51*t^6.95 + g1^42*t^6.96 + 2*g1^33*t^6.97 + 3*g1^15*t^6.98 + 5*g1^24*t^6.98 + 3*g1^6*t^6.99 + t^7./g1^3 + (5*t^7.01)/g1^12 + t^7.02/g1^21 + (2*t^7.03)/g1^30 + t^7.05/g1^48 + 4*g1^66*t^7.93 + 4*g1^48*t^7.95 + 2*g1^39*t^7.96 + 7*g1^30*t^7.97 + 2*g1^21*t^7.98 + 8*g1^12*t^7.99 + 3*g1^3*t^8. + (2*t^8.01)/g1^6 + (4*t^8.02)/g1^24 + (2*t^8.02)/g1^15 + t^8.03/g1^33 + g1^108*t^8.89 + g1^90*t^8.91 + g1^81*t^8.92 + g1^72*t^8.93 + 5*g1^63*t^8.94 + 6*g1^45*t^8.95 + 4*g1^54*t^8.95 - g1^36*t^8.96 + 10*g1^27*t^8.97 + 2*g1^18*t^8.98 + 6*g1^9*t^8.99 - t^4./(g1^3*y) - t^5.01/(g1^6*y) - t^6.01/(g1^9*y) - (g1^33*t^6.97)/y - (g1^15*t^6.98)/y - (g1^6*t^6.99)/y - t^7./(g1^3*y) - t^7.01/(g1^12*y) - t^7.02/(g1^21*y) + (g1^3*t^8.)/y - t^8.02/(g1^15*y) + (g1^45*t^8.95)/y + (g1^54*t^8.95)/y + (g1^36*t^8.96)/y + (2*g1^18*t^8.98)/y - (t^4.*y)/g1^3 - (t^5.01*y)/g1^6 - (t^6.01*y)/g1^9 - g1^33*t^6.97*y - g1^15*t^6.98*y - g1^6*t^6.99*y - (t^7.*y)/g1^3 - (t^7.01*y)/g1^12 - (t^7.02*y)/g1^21 + g1^3*t^8.*y - (t^8.02*y)/g1^15 + g1^45*t^8.95*y + g1^54*t^8.95*y + g1^36*t^8.96*y + 2*g1^18*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57486 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4743 1.6839 0.8755 [X:[], M:[0.9952], q:[0.4879, 0.5073], qb:[0.5024, 0.4927], phi:[0.3349]] t^2.01 + t^2.94 + t^2.97 + t^2.99 + t^3. + t^3.03 + t^3.95 + t^3.98 + t^4. + t^4.02 + t^4.03 + 2*t^4.95 + 2*t^4.98 + t^5. + 2*t^5.01 + 2*t^5.04 + t^5.45 + t^5.47 + t^5.5 + t^5.51 + t^5.88 + t^5.91 + t^5.93 + t^5.94 + 2*t^5.96 + 2*t^5.97 + 2*t^5.99 - 2*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail